Recent advances in dynamic effects in OuroborosBEM

Samuel Salvador
Laboratoire de Physique Corpusculaire de Caen
Normandie Univ, ENSICAEN, UNICAEN, CNRS/IN2P3, LPC Caen, 14000 Caen, France

February $18^{\text {th }} 2021$

OuroborosBEM

Microscopic MC simulation for particle transport in an electric field on GPUs

- Gases available: Ar, $\mathrm{CO}_{2}, \mathrm{~N}_{2}, \mathrm{CF}_{4}, \mathrm{CH}_{4}$, $\mathrm{iC}_{4} \mathrm{H}_{10}, \mathrm{O}_{2}$
- Interaction cross sections for mixture gases
- Electron anisotropy scattering
- Penning transfer probability
- 2 different integration algorithms: Euler or PEFRL ($\delta t=25 \mathrm{fs}$)
- Signal generation through Ramo field maps
- Extraction of lots of observables ($\left.\mathrm{v}_{\mathrm{d}},<\mathrm{E}\right\rangle$, positions,...)
- Electric field calculation (static, dynamic, RF)

OuroborosBEM

The field

- Calculated using a Boundary Element Method (mesh=surface elements)
- unknowns: cell surface charge densities $V=Q \sigma\left(Q: \int \frac{1}{4 \pi \epsilon_{0} r} d S\right)$
- Common behaviour at start (e.g. 12000 cells):

1 Fill matrix $Q(\sim 100 \mathrm{~ms})$
2 Matrix inversion $Q^{-1}(\sim 1.2 \mathrm{~s})$

Static option: once at the beginning of the simulation

- Creates a field map and a geometry map (and Ramo field maps) at predefined grid points:

$$
Q^{-1} V=\sigma \rightarrow \vec{Q}_{\text {grid }} \sigma=\vec{E},\left(512^{3}: \sim 200 \mathrm{~s}\right)
$$

OuroborosBEM

Dynamic option

- Every N step ($\mathrm{N} \neq 1$: approximation) and at each particle position
$3 Q^{-1} V=\sigma$
1 Change the potential of each cell
$4 \quad \vec{Q}_{p a r t} \sigma=\vec{E}$
2 Calculate the influence of the particles on the cells:

$$
V_{\text {cell } / i}=\sum_{i}^{N_{\text {part }}} \frac{1}{4 \pi \varepsilon_{0}} \frac{q}{\left\|\vec{r}_{\text {cell }}-\vec{r}_{i}\right\|}
$$

5 Add the contribution of the particles on the field:

Recent validation

- Drift velocities and diffusion coefficient

Recent validation

- First Townsend coefficient α and gas gain in GEMs ($r_{\text {Penning }}=0.574$, Sahin et al. NIMA 768, 104-111, 2014)

Results are quite cross section dependant

What's new

Saving data

- Autosave time
- Escape time and restart from previous simulation

Speeding-up

- Multi-GPUs
- Nearest neighbours algorithm

Physics

- Charging-up
- Microscopic ion transport
- Recombination

OuroborosBEM Multi-GPUs

OuroborosBEM multi-GPUs

Static calculation time

	\# GPUs			
\# Map size	1	2	3	4
256^{3}	34 s	17 s	11 s	8 s
512^{3}	212 s	145 s	97 s	73 s
512×1024^{2}	1088 s	544 s	352 s	250 s

Dynamic calculation for 100 steps

	\# GPUs			
\# bodies	1	2	3	4
16000	$4,6 \mathrm{~s}$	3 s	$2,8 \mathrm{~s}$	$2,2 \mathrm{~s}$
160000	63 s	32 s	24 s	21 s
1600000	3311 s	1661 s	1227 s	850 s

OuroborosBEM: 'Nearest neighbours'

Calculating the N -Body problem

- Far field approximation: exact calculation only for the closest particles

OuroborosBEM: 'Nearest neighbours'

Calculating the N -Body problem

- 2 parameters: grid size and calculation order

OuroborosBEM: 'Nearest neighbours'

Grid size

\# bodies	\#Body	NN			
		$8,8,8$	$16,16,16$	$32,32,32$	$64,64,64$
6000		$3,4 \mathrm{~ms}$	$3,5 \mathrm{~ms}$	$2,2 \mathrm{~ms}$	$2,2 \mathrm{~ms}$
60000		107 ms	24 ms	16 ms	25 ms
600000	$57,5 \mathrm{~s}$	$8,7 \mathrm{~s}$	$1,43 \mathrm{~s}$	379 ms	619 ms

OuroborosBEM: 'Nearest neighbours'

Order, Relative differences compared to the exact calculation of the x component of the field (600000 particles, $32,32,32$)

Order	Time	Interval : -0.5;0.5 (\%)			Interval : -0.005;0.005 (\%)		
		$\begin{gathered} \mu \\ \left(\times 10^{-6}\right) \end{gathered}$	$\begin{gathered} \sigma \\ \left(\times 10^{-3}\right) \end{gathered}$	N (\%)	$\begin{gathered} \mu \\ \left(\times 10^{-6}\right) \end{gathered}$	$\begin{gathered} \sigma \\ \left(\times 10^{-4}\right) \end{gathered}$	N (\%)
0	190 ms	15,0	9,2	99,7	-12,1	9,5	97
1	375 ms	-5,0	4,0	100	-3,24	6,36	99,4
2	1,02 s	-4,6	2,9	100	0.05	5,7	99,7
3	$1,98 \mathrm{~s}$	5,4	1,6	100	-1.02	5,4	99,8

Charging-up

Changing the dielectric cells surface charge densities $\sigma_{F, i}(t)$
$\checkmark \sigma_{F, i}(t+\Delta t)=\sigma_{F, i}(t)+\frac{1}{A_{i}} \sum_{p=1}^{\mathcal{N}_{p, i}} q_{p}$

- Delayed by 1 time step for efficiency purposes
- No evacuation for the moment
- Effect is obviously small for $\mathcal{N}_{p, i}<1 \times 10^{5-6}$
- But can be increased using "Macro" particles

Towards full Monte Carlo calculations

Ion scattering cross sections

- $\mathrm{Ar}^{+}+\mathrm{Ar}$ data (Phelps calculations) only
- Isotropic and back-scattering
- Same treatment in the code for electrons and ions

Dynamic microscopic calculations

- Knowledge of the distance between closest electrons and ions
- No difference between anions and cations (created through attachment) due to missing cross sections
- Possibility for recombination processes...

Recombination: Classical representation

1. Creating the electron/ion pair in the ionisation process

- Thermal energy of the ion (3/2kT)
- Electron residual energy \sim Recoil energy
- Both electrons have opposite momentum in the c.m.
- Distance between the electron and ion from

Coulomb barrier: $d=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{E_{\text {res }}} \simeq 1.44 \mathrm{eV} \cdot \mathrm{nm} / E_{\text {res }}$

Recombination: Classical representation

2. Inverse process for recombination

- Distance d is known during the 'Nearest neighbours' process
- If $d<\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{E_{\text {ioni }}}$, the particles recombine
- But what about their kinetic energies?
- Can be large due to Coulomb attraction
- Energy is above ionisation potential...
- If d is too small, might never recombine due to the time step (25 fs)...

3. Another approach?

- Statistical one: probability to recombine if certain conditions apply?
- Semi-quantum one: which calculations and at what cost?

> Still to be tested and validated with data (but which ones?)

Perspectives

What's next?

- A valid recombination process
- Charging-up functions
- "Resistive materials" to evacuate charges (useful in μ-RWell, MicroMegas...)
- NURBS: reducing the number of cells and increase the precision
- Ideally: as much cross-sections as possible

