

AGH UNIVERSITY OF SCIENCE AND TECHNOLOGY

Energy Transfer Model for Ne-CO, and Ne-N, Mixtures; news for ATLAS mixtures (Ar-CO₂-iC₄H₁₀) RD51 Mini-Week 15 – 19 February 2021 CERN Özkan ŞAHİN¹ and Tadeusz KOWALSKI² ¹Bursa Uludağ University, Physics Department, Bursa –TURKEY ²Faculty of Physics and Applied Computer Science, AGH University of Science and Technology,

Krakow – POLAND

Penning energy transfers

 $e^- + A \rightarrow A^+ + 2e^-$: ionisation \rightarrow Townsend coefficients

$e^- + A \rightarrow A^*$: excitation \rightarrow what happens ? Michel Penning explains

- 1. F.M. Penning, *The starting potential of the glow discharge in neon argon mixtures between large parallel plates: II. Discussion of the ionisation and excitation by electrons and metastable atoms, <u>Physica, Volume 1 (1934)</u>.*
- 2. M.J. Druyvesteyn and F.M. Penning, The Mechanism of Electrical Discharges in Gases of Low Pressure, <u>Rev. Mod. Phys., 12 (1940)</u>.
- Assume a gas mixture (A B)

 - $B \qquad : mostly a molecular gas (CO₂, CH₄, C₂H₆, C₃H₈, iC₄H₁₀...)$
 - The following can happen for an excited atom (A^*) :

 - $A^* + A \rightarrow A_2^+ + e^-$
 - $A^* \to A + \gamma$

- : collisional ionisation,
- : homonuclear associative ionisation,
- : radiative decay
- : photo-ionisation

***** Other processes will be discussed in the transfer model

Townsend coefficient adjustment

 $\alpha_{Pen} = \alpha \left(1 + r_{Pen} \frac{\nu^{exc}}{\nu^{ion}} \right) \square$

a Pen

exc

 $G = e^{\int \alpha_{Pen}(E(r)) dr}$ Penning corrected gas gain

- : uncorrected Townsend coefficients;
- : corrected Townsend coefficient including Penning transfers;
- v^{*i* on} : production rates of the direct ionisations in the mixture;
 - : production rates of the excitations of the noble gas atoms;
 - only excited states of noble gas which are eligible to ionise ;
- *r*_{Pen} : Penning transfer probabilities:
- \clubsuit assuming α proportional to the sum of v_{ion} ,
- \diamond the gain curves are fitted using the same r_{Pen}
 - impossible to separate them, strong correlations

 \bullet α, v^{ion} , v^{exc} depend on gas properties (pressure, temperature) and Magboltz calculates them Ö. ŞAHİN, RD51 Mini-Week 15–19 February 2021, CERN

Published Data

PUBLISHED BY IOP PUBLISHING FOR SISSA MEDIALAB

RECEIVED: June 19, 2015 REVISED: October 1, 2015 Accepted: December 8, 2015 PUBLISHED: January 7, 2016 PUBLISHED BY IOP PUBLISHING FOR SISSA MEDIALAB

RECEIVED: August 11, 2020 ACCEPTED: October 21, 2020 PUBLISHED: December 9, 2020

Systematic gas gain measurements and Penning energy transfer rates in Ne-CO₂ mixtures

Measurements and calculations of gas gains in Ne-N₂ mixtures — Pressure and concentration scaling

Ö. Şahin,^{a,1} T.Z. Kowalski^b and R. Veenhof^{a,c}

^aDepartment of Physics, Uludağ University,

16059 Bursa, Turkey

^bFaculty of Physics and Applied Computer Science, AGH University of Science and Technology, Kraków, Poland

^cRD51 collaboration, CERN,

Genève, Switzerland

E-mail: osahin@uludag.edu.tr

ABSTRACT: In Ne-CO₂ mixtures, excitation energy of Ne atom can be used to ionize CO₂ molecule by the mechanisms called Penning transfers. In the present work, we have measured the gas gain systematically in various Ne-CO₂ mixtures (Ne + 0.6-60 % CO₂) at 0.4, 0.8, 1.2, 1.8 atm. The experimental data have been fitted to investigate the Penning energy transfer rates and the secondary processes playing a role in avalanche formations.

Ö. ŞAHİN, RD51 Mini-Week 15–19 February 2021, CERN

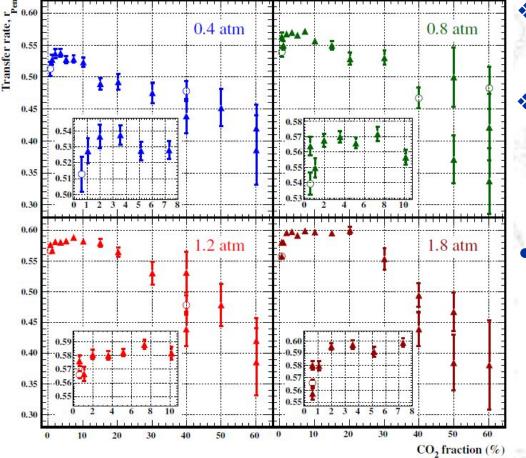
T.Z. Kowalski¹ and Ö. Şahin

^aFaculty of Physics and Applied Computer Science,

AGH University of Science and Technology, Al. Mickiewicza 30, 30-057 Krakow, Poland

^bDepartment of Physics, Uludağ University,

Bursa, Turkey

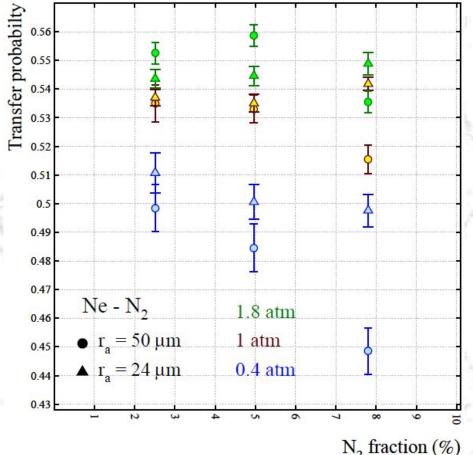

inst

E-mail: Tadeusz.Kowalski@fis.agh.edu.pl

ABSTRACT: Systematic high-precision measurements of gas gains in Ne-N₂ mixtures have been made. The concentration of N₂ was changed from 2,5% to 20% and the mixtures pressures were varying from 0.05 to 1.8 atm. In Ne-N₂ mixtures, excitation energy of Ne atom can be used to ionize N₂ molecule by the Penning transfer. Comparing the measured and calculated with MAGBOLTZ simulation program gas gains the Penning energy transfer probability and the second Townsend ionization coefficient, β , describing secondary processes playing a role in avalanche formations have been determined.

inst

Transfer Probabilities in Ne - CO, mixtures (problem)


Ö. ŞAHİN, RD51 Mini-Week 15–19 February 2021, CERN

- The transfer rates increase with pressure (for < 40 % CO₂)
 - > This is easily understandable; Collision times
- BUT, at the same pressure, the rates first increase and then decrease with CO₂
 - This a big question mark
 - Excited neon atoms finds more CO₂ molecule to transfer around
- We made many efforts:
 - The model we developed in our Penning paper (published 2010) does not fit the transfer data

https://doi.org/10.1088/1748-0221/5/05/P05002

- Discussions based on the production rates do not help to explain the drops
 - See earlier RD-51 talks

Transfer Probabilities in Ne - N, mixtures (problem)

- Similar trend with increasing pressure; related to the collision times
- From the first measurements there were no obvious bumps (except 1.8 atm) for the transfer rates at the same pressure
 - \succ they were seen clearly in Ne-CO₂ mixtures;
 - > BUT, we had still the similar question mark
 - the rates decrease with CO_2
- The range of the measurements were increased to get better explanations
 - > N_2 concentration up to 20 %
 - \succ Pressure down to 0.06 atm

• We had to revisit to our transfer model to clarify the drops of the energy transfers

Energy Transfer Model

$$r_{\text{Pen}}(p,c) = \frac{a_5 p^2 (1-c)^2 + a_7 c^2 + a_1 p c + a_3}{a_6 p^2 (1-c)^2 + a_4 c^2 + p c + a_2}$$

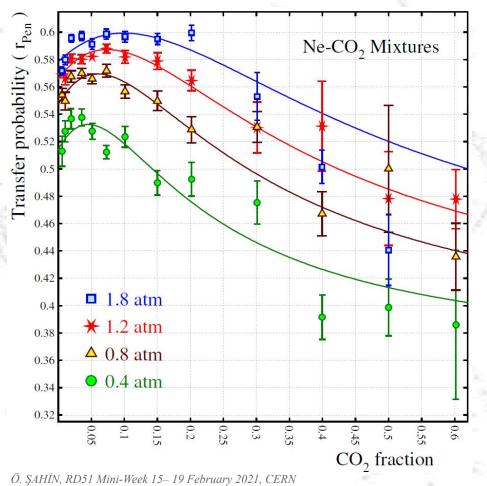
- Numerator: increase the ionizations
- **Denominator:** excitation loses
- **♦** a_1 : collisional ionization efficiency Ne^{*} + B → Ne + B⁺ + e⁻
- a_2 : decay by emitting photons Ne^{*} \rightarrow Ne + γ
- ***** a_3 : photo-ionization $\gamma + B \rightarrow B^+ + e^-$
- a_3/a_2 radiative transfer efficiency

- **p:** dimensionless pressure; $p_{gas} = p \ge 1$ atm
- c: quencher concentration ($CO_2 \text{ or } N_2$)
- - a₆: excimer formation probability in collisions Ne^{*} + Ne + Ne \rightarrow Ne₂^{*} + Ne
- a₅/a₆ : contribution of the created excimers to the ionizations

Energy Transfer Model

$$r_{\text{Pen}}(p,c) = \frac{a_5 p^2 (1-c)^2 + a_7 c^2 + a_1 p c + a_3}{a_6 p^2 (1-c)^2 + a_4 c^2 + p c + a_2}$$

 a_4 and a_7 : describe the drops on the transfer rates FIRST TIME

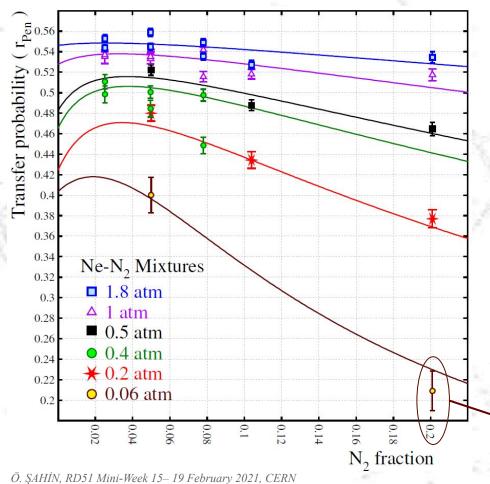

> No pressure dependence

a7: excited neon atom leads to ionisation in the presence of two quencher molecules

 $Ne^* + B + B \rightarrow Ne + B^+ + e^- + B$ (NEW) $Ne^* + CO_2 + CO_2 \rightarrow Ne + CO_2^+ + e^- + CO_2^ Ne^* + N_2 + N_2 \rightarrow Ne + N_2^+ + e^- + N_2^-$

 a_7/a_4 efficiency of the process NEW

Model Results for Ne-CO, Mixtures


$r_{\text{Pen}}(p,c) =$	$\frac{a_5p^2(1-c)^2 + a_7c^2 + a_1pc + a_3}{a_6p^2(1-c)^2 + a_4c^2 + pc + a_2}$
	$a_6p^2(1-c)^2 + a_4c^2 + pc + a_2$

Parameter	Ne-CO ₂ mixtures
al	0.71104 ± 0.06527
a2	0.06323 ± 0.04238
a3	0.03085 ± 0.02140
a4	4.20089 ± 2.60772
a5	0.07831 ± 0.05328
a6	0.13235 ± 0.09036
a7	1.47470 ± 1.08256

♦ a_7 : Ne^{*} + CO₂ + CO₂ \rightarrow Ne + CO₂⁺+ e⁻ + CO₂

★ The efficiency of the new physical process is $a_7/a_4 \approx 35 \%$

Model Results for Ne-N, Mixtures

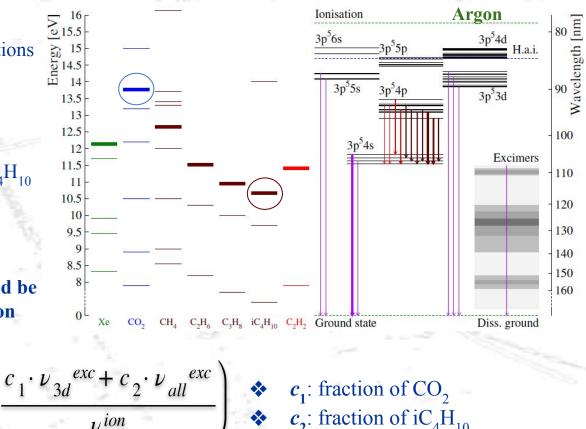
$$r_{\text{Pen}}(p,c) = \frac{a_5 p^2 (1-c)^2 + a_7 c^2 + a_1 p c + a_3}{a_6 p^2 (1-c)^2 + a_4 c^2 + p c + a_2}$$

Parameter	Ne-CO ₂ mixtures
al	0.55802 ± 0.06527
a2	0.00514 ± 0.00536
a3	0.00206 ± 0.00238
a4	0.55385 ± 0.08641
a5	0.01153 ± 0.03412
a6	0.02073 ± 0.06184
a7	Constant 0.01

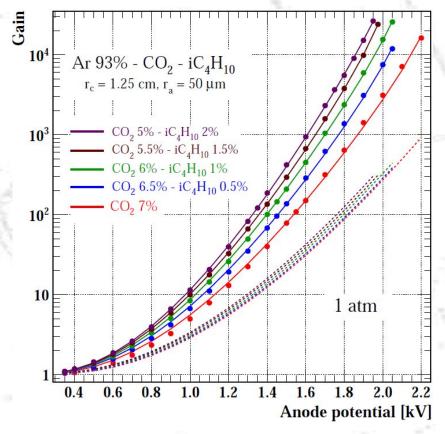
a₇: Ne* + N₂ + CO₂ → Ne + N₂⁺ + e⁻ + N₂
Parameter a₇ favours to take a constant value
> a₇ > 0.07 does not fit the point 20 % N₂ at 0.06 atm
Much lower efficiency a₇/a₄ ≈ 1.8 % (35% in Ne-CO₂)₁₀

ATLAS Mixtures (Ar-CO₂-iC₄H₁₀)

***** Paolo Iengo asked data for ATLAS mixtures (Ar-CO₂-iC₄H₁₀)


➤ In ATLAS Ar: CO_2 93:7 is the baseline gas mixture for Micromegas, however we are now considering to add a small fraction of iC_4H_{10} and have started test with Ar: CO_2 : iC_4H_{10} 93:5:2 (October 2020).

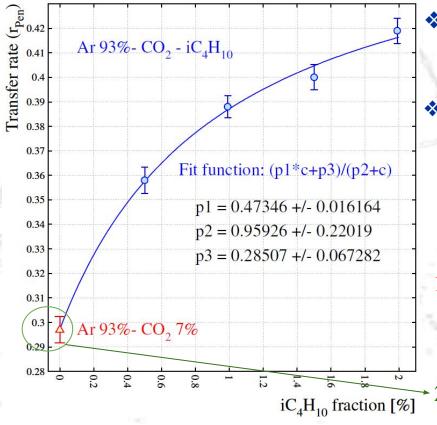
- Tadeusz Kowalski made the first systematic gas gain measurements with a single wire proportional counter (November 2020)
- Preliminary calculation results were shared at the weekly CERN GDD meeting (December 2020)
 > Recalculated with more sensible Penning adjustment method
- New measurements will be useful:
 - \succ better understand the physical processes involved in the transfer of energy and,
 - \succ estimate the maximum achievable gas gains in these mixtures.


Penning Correction in Ar-CO₂-iC₄H₁₀ mixtures

$Ar^* + CO_2 \rightarrow Ar + CO_2^+ + e^-$

- > Ar^{*} 3p⁵3d (13.8 eV) and higher excitations can ionise CO₂ (IP: 13.77 eV)
- $\mathbf{Ar}^* + \mathbf{iC}_4\mathbf{H}_{10} \rightarrow \mathbf{Ar} + \mathbf{iC}_4\mathbf{H}_{10}^+ + \mathbf{e}^-$
 - ➤ All excited Argon atoms can ionise iC₄H₁₀ (IP: 10.67 eV)
 - ➤ The lowest excited Argon 11.55 eV
 - Concentration of the admixtures should be taken account while Penning calculation

Gas Gains in Ar-CO₂-iC₄H₁₀ mixtures



- Points are the measurements
- Dashed lines without any correction
- Full lines with Penning and feedback corrections
 - Feedback correction for the over-exponential increases in gas gain

$$G_{total} = G / (1 - \beta G)$$

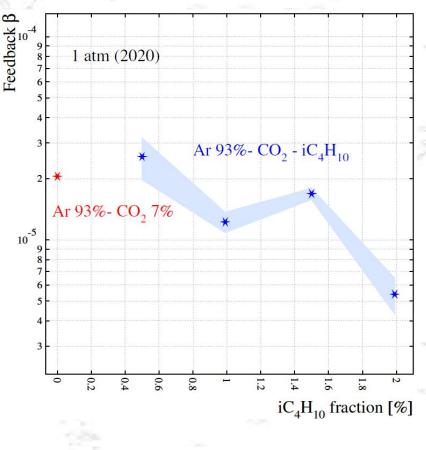
- Higher gains are reached with more iC_4H_{10} at the same anode potential
 - We are planning to proceed with the new gas gain measurements and their fits
 - > Ar 93 % iC_4H_{10} 7 % can be first
 - Other binary mixtures may also be useful
 - Any suggestion will be welcome !

Energy Transfer Model Ar-CO₂-iC₄H₁₀ mixtures

♦ Concentration dependence of the energy transfers
 ▶ c: fraction of the iC₄H₁₀

Clear evidence of the rise with the increase of iC₄H₁₀ concentration

 $r_{Pen}(c) = \frac{p1 \cdot c + p3}{c + p2}$


1) Collosional ionizations (p1 \approx 47 %) \gg Ar^{*} + B \rightarrow Ar + B⁺ + e- \blacksquare B: CO₂ or CO₂ + iC₄H₁₀

• 2) c = 0 refers to transfer rate in Ar 93 %-CO₂ 7 % p3/p2 \approx 30 % is comparable with earlier data

Feedback Parameters

- Feedbacks terms tend to decrease with the increase of iC₄H₁₀ concentration
 - > iC₄H₁₀ is better quencher than CO₂ molecules
 - > The maximum obtainable gas gain increase
 - Measurements in Ar 93 % iC₄H₁₀ 7 % mixtures would be beneficial in providing better understanding
 - The feedback parameter in Ar 93% CO₂ 7% (red star) is quite consistent with our previously published data

Özkan Şahin, TadeuszZ.Kowalski, RobVeenhof, *High-precision* gas gain and energy transfer measurements in $Ar-CO_2$ mixtures, <u>Nucl. Instrum. Meth. A 768 (2014) 104</u> (see plot 12).

15

Summary

- Energy transfer drops in Ne-CO₂ and Ne-N₂ are modelled successfully for the first time
 - > Adding a **new parameter** to our original fit function (constructed in 2010 paper)
 - Scales with the square of admixture concentration
 - No pressure dependence
 - Indicates a new kind of ionisation mechanism $(Ne^* + B + B \rightarrow Ne + B^+ + e^- + B)$
 - Special thanks to Rob Veenhof for the useful discussions
 - > The manuscript is under preparation (almost finished)
- Surveys of the ATLAS mixtures $(Ar-CO_2-iC_4H_{10})$ continue
 - \succ The very promising initial results encourage us to expand our research on this topic
 - New gas gain measurements (thanks to Tadeusz Kowalski) with the single wire counter will give important ideas for the additional ionisations involved
 - \succ These works seem useful for MMs applications, too

Thanks and ???