Transport properties of gases and gas mixtures used in detectors
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Looking at the next generation of experiments

To instrument large areas, gas detector technology will remain unchallenged
In many application

e High rate capability

o Fast timing

« Improved space resolution

« High ion mobility

are required for several applications

Muons systems, tracking and triggering
TPC readout

Micropattern detectors

BUT
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‘Standalone’ muon performance is not any more a very
important criterion. Future detectors rely on a combined
tracker/muon system performance.

The task of the muon system is triggering and muon
identification.

4-5% standalone momentum resolution can be achieved in
at n=0, 30% at n=2.5 by simply measuring the angle at which
the muon exits the calorimeters.

In the forward muon system, standalone momentum
measurement and triggering can only be achieved when
using a forward dipole (like ALICE, LHCb).

The combined muon momentum resolution (tracker + muon
system) can better than 10% even for momenta of 20TeV/c
at n=0.

Gas detectors similar to the ones employed for HL-LHC are
good candidates for the muon systems.



Input required for cross sections of gases & transport parameters
Lack of precise data for the molecular gases involved
Tables needed for input into gaseous detectors of the future systems
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Fig. 17. Cross section, Z = 2: EEDL (empty circles), BEB model (empty Fig. 31. Cross section, Z = 18: EEDL (empty circles), BEB model (empty
squares), DM rr}odel (empty triangles) and experimental d.ata from [76] (black squares), DM model (empty triangles) and experimental data from [76] (green
circles), [77] (pink stars), [78] (red squares), [79] (blue triangles), [80] (green upside-down triangles), [112] (black squares), [84] (black triangles), [81] (red
upside-down triangles), [81] (turquoise asterisks), [82] (black squares), [83] squares), [113] (blue triangles), [114] (black circles), [83] (pink stars), [78]
(black triangles) and [84] (black stars).

(turquoise asterisks), [115] (red triangles) and [80] (red circles).

Discrepancy between simulation and data at low energy

Discrepancy between different experimental results



RPC Community Working on experimental optimisation G. Rigoletti B. Mandelli and R. Guida
NO SIMULATIONS —— EXPERIMENTAL DATA 2020 JINST 15 C05004

C,H,F,/iC,H,o/SFs 95.2/4.5/0.3  CH,Fi/HFO/CO,/iC,Hyo/SFs 22.25/22.25/50/4/1  CH,F4/HFO/CO,/iC,Hy/SFs 27.25/27.25/40/4/1
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Figure 2. Efficiency and streamer probability curves for the standard gas mixture and two selected HFO + CO,
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Beatrice and Roberto are actively promoting and working
in RPC ECOGAS@GIF++ and AIDAInnova
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CEPS, and partly EP, for 2019-2026 funded a number EcoGas related L
St u d e SI an d one I Ine Of researc h IS Figure 5. On the left: rate of HF production against the current drawn by the detectors at different irradiation
. . . levels. It can be observed that the dependence on the current is linear. For different gamma rate the slope is
“ D ete CtO r p e rfO rmance wi t h new environme nta I Iy frl en d Iy ga ses an d ditferentt. In particular, at higI:etr gamﬁla rates the increase oftthe rate of HF productitoi is lower,t On the rIi)ght:
rate of HF production against the gamma rate for the standard gas mixture and the HFO + 40% CO, mixture

neW gas System (COIIaboration and Support to eXperimentS)” wi.tha(l:letc.ectolr op:rjtti.ng at}ro;hriipogllt. ;At l(liigl(liergam.m;rates the HF production for the HFO-based gas
mixture is almost 4 times higher than the standard gas mixture.
Dedicated to RPC




EXAMPLE #1

The RPC community has been studying the EcoGas issues since
several years. Many publications have reported results on
different eco-friendly gases operated on RPCs. A new kind of
freon, HFO1234ze is the gas that at moment has been
considered the most interesting from the RPC performance
point of view. Anyway no information are available about its
C2H2F4 behaviour under long time irradiation periods. In 2019 EPDT,

e ‘ CMS, ATLAS, Alice and recently LHCb/Ship people involved in
the studies of ECOGAS for RPCs, have defined a Collaboration
named RPC ECOGAS@GIF++ with the goal to study the RPC
operations with Eco-Friendly gas mixtures under irradiation at
GIF++. Several chambers of different dimensions and gas gap
= CoHoF4 B SF6 B CF4 thickness are under irradiation at GIF++ and the RPCs

Run 1 performance with HFO1234ze-CO2 gas mixtures are studied. In

the AIDAInnova Project, the RPC ECOGAS@GIF++
Collaboration, with Frascati INFN and CERN groups as
beneficiaries, is also proponent of the RPC EcoGas subtask 7.2.2

e Davide Piccolo-INFN/Coordinator

GHG emission
Run2

GHG emission in Run2 [%]

ATLAS CMS ALICE LHCb



EXAMPLE #2

Quencher gases (often Fluor-based) for optimal performance employed
More studies needed for non-F gas

Overview of the greenhouse gases used at the LHC experiments.

Gas GWP Experiment and detector type
CoHoF, 1300 ALICE RPC; ATLAS RPC; CMS RPC
SFg 22,200 ALICE RPC; ATLAS RPC; CMS RPC
CF,4 5700 CMS CSC; LHCb GEM, RICH2, MWPC
CsF10 8600 LHCb RICH1

iC4Hqo 33 ALICE RPC; ATLAS RPC; CMS RPC
HC5H12 11 ATLAS TGC

e adding SF to ECO

RD51 Workshop on Gaseous Detector Contribution to PID
16 February 2021

PID options with RPCs

Roberto Preghenella

Istituto Nazionale di Fisica Nucleare, Bologna

MRPC with eco-friendly gas

searching for new eco-gas mixtures
with low Global Warming Potential and reasonable cost
while keeping excellent timing performance and low noise

Baek et al., JINST 14 (2019) 11, C11022
—e— Freon+SF6(5%) v ECO+CO2(15%)
--¢-- ECO+CO2(10%) —a— ECO+CO2(5%)
—a— ECO only ~ 1300Hz --&-- ECO only ~ 930Hz

pure ECO or with CO,
slightly worse performance than STD
m efficiency plateau unstable
m higher time resolution

g ECO only ~ 460Hz —s— ECO+SF6(1%)
--¢-- ECO+SF6(2%)
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very similar performance to STD

m strongly electronegative gas needed 120f
ideas to replace SF6 100
> try CF,| (trifluoroiodomethane) 80 =
] GWP <5 60 1 I 1 - I i
o try 3-component mixtures o A i i i e HV(kv§2

very important and promising directions for the future
do not forget also efforts to reduce flow and improve recirculation systems

40



New paper version
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Target

A study group dedicated to coordinated studies on:

e Microscopic transport properties of “novel” gases and gas mixtures
e Cross sections update
e Drift, Diffusion, lon Transport, Magnetic Field, Operation etc..
e Depending on the case ...
e Macroscopic behaviour for detector operations - simulations and experiments
e Share the work across different groups

 Prepare a ready to use compendium of useable blocks



Contribution from:

« Anna Colaleo
 Leszek Ropelewski
« Eraldo Oliveri

« Roberto Guida

e Beatrice Mandelli

 Piet Verwilligen
A Letter of Intent to be prepared ...

within RD51 towards creating interest
« Marcello Maggi and group of activities geared towards

e Davide Piccolo future upgrades, experiments ....
e Michael Tytgat
o Archana Sharma

« Raffaella Radogna




