Meta-Data experience in a modern collaboration

Solenoidal Tracker At RHIC (STAR) Jérôme LAURET, S&C Leader

Atlas MetaData workshop, LSPC Grenoble/France, August 2010

Outline

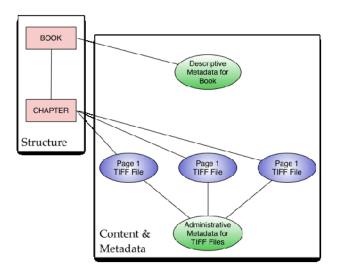
My mission: present "a bit of everything about Meta-Data" used in STAR ... No room for technology details, ...

Defining Meta-Data & usage in STAR

- General definition and classification
- Structural Meta-Data
- Bookkeeping and human level info
 - General run-time information
 - Calibration information
 - FileCatalog
 - Tags
- Last thoughts & remarks
- Conclusion

Defining Meta-Data & usage in STAR

Atlas MetaData workshop, LSPC Grenoble/France, August 2010


General definition and classification

- Meta-Data: anything describing data
 - Funny thing is: index and structure of a DB is Meta-Data while the content can be its data but its usage be considered as Meta-Data by a higher level component ...
 - Nearly all data could be Meta-Data for a higher level component
 - Already, the definition make your head spin ...
- Classifications (many "theories", standards, ...) & technologies
 - No intent to lose objectives: want to (a) use the damned thing at the end (b) be useful to select or supplement information in the data stream
 - Any other definition, fine with me (let us see if it is practical and works)
 - Our generic classification
 - Structural (object description)
 - Bookkeeping (human level operational and guiding)

- Object description i.e. a description on how the information/objects are organized
- STAR workflow path to physics: nearly all data have structural Meta-Data
 - Exception: DAQ file do not have embedded schema evolution (old style "bank navigation" and conditional logic)
 - Otherwise STAR has taken a pragmatic approach from the start
 - Schema or version evolution all the way (data stream, database access, configuration access, ...)
 - An API layer handling the evolution (in house or external, hidden or explicit)
- Several levels
 - Simple (text) Meta-Data: LoadBalancing, service (connection) information, ... XML+XSD
 - Data streams: self-described structure ("Table" based or ROOT files) + handling of version or schema evolution
 - ROOT handles schema evolution for us
 - Table reading are version evolving
 - Database content: all DB based tables (calibrations) designed with version evolution in mind.
 - API layer handles reading and writing content
 - Object representation at user level IO and storage behind the scene

Only recipe for productivity: users must remain agnostic ...

Magic, incantations and structure handling happening behind the scene ...

	Database structure	e : Calibrations_zd	C		f Records Available Calibrations_zdc
				NodeRelation2	
Table Name	Last entryTime	Index Field(s)	Records		
NodeRelation	2004-07-22 15:48:04	ParentID NodeID BranchID ConfigID	2	Nodes3 schema 4	
Nodes	2004-07-22 15:43:09	name versionKey	3		-
schema	2004-07-22 15:36:04	<u>name</u> <u>ID</u>	4	structure2	
structure	2004-07-22 15:36:04	<u>name</u> <u>ID</u>	2	dcsmdBeamCenter	977
zdcsmdBeamCenter	2004-07-23 14:30:02	<u>nodeID</u> <u>elementID</u> <u>beginTime</u> <u>flavor</u> <u>deactive</u>	977	zdcsmdPed	261
zdcsmdPed	2004-07-23 01:43:55	<u>nodeID</u> <u>elementID</u> <u>beginTime</u> <u>flavor</u> <u>deactive</u>	261		

In this example, table schema has changed ... fields will be used by the API to handle <u>version evolution</u>

- structure holds the names of all Objects
- schema holds the names of a concerns associated with an Object, their order, and when fields appeared (at which schema version)

	STAR Offline DB Structure Explorer						
	CALIBRATIONS	GE	OMETRY	CONDITIONS			
rations / zdc							
DB descr	iptor for : Calibra	tions / zdc ,	/ zdcsmdPed				
This struct	This struct is NOT indexed						
type	name	store type	timestamp	comment			
nt	RunID	ascii	2004-07-22 15:35:57	runID			
float [32]	ZdcsmdPedestal	ascii	2004-07-22 15:35:57	ADC pedestal of zdcsmd			
Sample I	DL descriptor for	Calibrations	s / zdc / zdcsmdPed				
This struct	This struct is NOT indexed						
/* likely nat	/* likely path: \$STAR/StDb/idl/zdcsmdPed.idl */						
struct zdesr {	icPeu						
long Run: float Zdcs };	long RunID; /* runID */ float ZdcsmdPedestal[32]; /* ADC pedestal of zdcsmd */ };						
Sample C	Sample C++ descriptor for Calibrations / zdc / zdcsmdPed						
This struct	This struct is NOT indexed						
/* likely pat	h: \$STAR_LIE//indud	le/zdcsmdPed	h (converted from .idl) */				
typedef stru	ct zdcsmdPed_st {						
int RunID float Zdes	int RunID; /* runID */ float ZdcsmdPedestal[32]; /* ADC pedestal of zdcsmd */ } ZDCSMDPED_ST;						
READ ex	READ example for Calibrations / zdc / zdcsmdPed						
read zdcsm	dand C i						

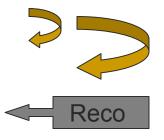
If users have doubts, a "structure explorer" will (a) decode the object names, fields, types and (b) generate code for reading and writing the object to the "DB"

NATIONAL LABO

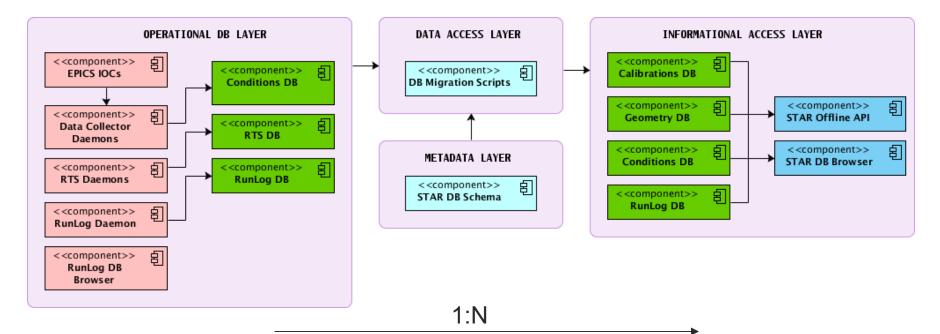
Bookkeeping Meta-Data

(operational or guiding)

Atlas MetaData workshop, LSPC Grenoble/France, August 2010


Bookkeeping and human level info

- The traps:
 - Too little information and data cannot be reconstructed, datasets cannot be located, analysis lacks performance (lack of selectors)


- o Too much information and M-D becomes as large as data
- Several kind in STAR
 - o General run-time information (operational)
 - Calibration data
 - FileCatalog data
 - Tags
 - o Others: ShiftInfo, ...

(operational) (guiding) (guiding)

General flow ...

Reduction, aggregation, synthesis, transformation

Single timestamp

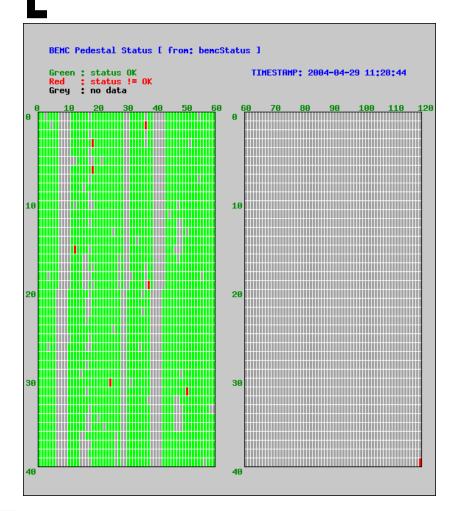
Multiple timestamps + ... Unified API

Bookkeeping and human level info (General run-time information)

- **General run-time information**: M-D accompanying real physics data taken during the Run: operator actions, internal states of various DAQ/RTS/SC components, detector states (health, parameters, throughput etc ...)
- Granularity: dagEventTag (event level), dagFileTag (file metadata), dagRunTag (run metadata), dagtrgSumCnt (triggers metadata per year as many configurations)
- Content examples and details:
 - Single timestamp (when the information was acquired/recorded) no change with time
 - **dagEventTag** database (RTS) : run ID, file sequence, event number, token, size, time, trigger 0 word, trigger command, DAQ related command, detector bits (on/off), I3 flags, additional trigger bits, dsm bits;
 - dagFileTag database (RTS) : run ID, begin/end event, number of events, file sequence, file, storage type (hpss/local);
 - dagRunTag database (RTS) : run ID, start/stop time, run type, total number of events
 - dagsumTrgCnts database (RTS) : run ID, trigger ID, number of events, event builder, average size:
- Size & Problems: EventTag
 - Grew to 100 GB per year by 2006, started to reach 100 GB per few weeks
 - Event based information dropped as out of balance and rarely consulted

Bookkeeping and human level info (General run-time information)

S R	RUN PERIOI	D:	TRG SE	ETUP:	<u>·</u>	MAGNE All		LD:	Select	*
	DAQ TYPE: [RTS] Shift		ys 🗌 ped 🗌 lase er	er 🗌 pulser	FILTER BAD R] Test Ru	ins 🗌 📃	Reset	~
Javascrip	t Tree Menu	Ĥ.	BBClarge	2000	1		6	0	0	^
	Run 10		BBCsmall	10000	17	[CP]	4	2000	2 K	
+ Mar	, 22-Mar, 28		bbcwest	400	11	[CP]	1	10000	10 K	
[⊕] Mar	, 15-Mar, 21		BBC_coin	10	5	[CP]	48	4442927	4.44 M	
	, 8-Mar, 14		bbc_minbias_mo	n 100000	9	[CP]	127	43874	43.87 K	
			bbc_monitor	40	1	[CP]	55	1741978	1.74 M	
	, 1-Mar, 7		bbc_monitor	40	270004	[CP]	183	883346	883.35 K	≡
"Feb,	, 22-Feb, 28		bemcHT0	100	9	[CP]	100	4829510	4.83 M	
🗄 Feb,	, 15-Feb, 21	≡	Central	4	3	[CP]	17	128177	128.18 K	
E. Feb.	, 8-Feb, 14		Central	4	5	[CP]	4	15003	15 K	
	, 1-Feb, 7		Central	4	6	[CP]	51	7487450	7.49 M	
			Central	4	260101	[CP]	155	8711338	8.71 M	
۳Jan,	, 25-Jan, 31		Central	4	260103	[CP]	826	69630594	69.63 M	
🕂 Jan,	, 18-Jan, 24		Central	4	260113	[CP]	275	34983782	34.98 M	
🗄 Jan,	11-Jan, 17		Central	4	260123	[CP]	1674	156163130	156.16 M	
	, 4-Jan, 10		Central_monitor	100	9		1	0	0	
			Central_monitor	100	11	[CP]	8	247268	247.27 K	
	, 28-Jan, 3		Central_monitor	100	260102	[CP]	60	28380	28.38 K	
+ Dec	, 21-Dec, 27		Central_monitor	100	260104	[CP]	786	212410	212.41 K	
[≞] Dec	, 14-Dec, 20		Central_monitor	100	260114	[CP]	275	115549	115.55 K	
	, 7-Dec, 13		Central_monitor	100	260124	[CP]	1673	869840	869.84 K	*
						7				
Archiv	e: Run 3		Run 4	Run 5	Run 6	F	Run 7	Run 8		


Typical bookkeeping # events per trigger word

NATIONAL LABOR

Bookkeeping and human level info

(General run-time information)

Typical monitoring Calorimeter status (1/0)

Bookkeeping and human level info (calibration information)

- **Calibration data:** M-D applied to physics data taken during the Run.
- Granularity: Detector *Conditions* data is collected every 1-5 minutes, resulting *Calibration* (derived) would follow this timeline. *Geometry* seldom granularity (a few)
- Content examples and details:
 - A two timestamps layer allowing historical preservation of all entries
 - beginTime defines a validity range for the entry with respects of a collision event time. Given an event time, the first begingTime < eventTime will be considered
 - entryTime allows for refining calibrations. Given a moment in the year at which production is made, only values entered in the DB at times < entryTime will be considered
 - RULE OF THUMB: ONLY insert, NO UPDATE for older values
 - Consequence: Given data production FULLY reproducible at all times
 - A "flavor" dimension allows separation by "realm" such as simulation or real-data, ... or test. API fully aware of flavors
 - At higher logic, hierarchical Ο
 - TPC \rightarrow DriftVelocity \rightarrow values (object). Object would contain east and west values for two methods.
 - API ask for the TPCDriftVelocity "object"
- Sizes & problems:

NATIONAL LABO

- Granularity results in ~15 GB raw data (reduction) \rightarrow 0.5 1 GB processed data per Run(!), ~20 0 GB in total for Runs 1-10 (offline) with one outliner
 - Problem in Run 5 & 6: size for the SSD alone is 10 GB for both years ill-defined table
- Burden not on user end but on DB admin to think of his storage model (split object, row repetition suppression, ...)

Bookkeeping and human level info (calibration information)

		STAR ONLINE STATU		[RUNLOG DAEMONS	SANITY: ONL MIGRATION	SANITY: OFL
SELECT SUBSYSTEM, PLEASE		/time interval. GMT time z					
open all close all	X Axis FROM 20: Y Axis FROM *	10-03-24 19:40:51	X Axis TO 2010-03	3-25 19:40:51	Y axis: linea		Show!
💈 STAR ONLINE STATUS	T AXIS FROM		T AXIS TO -		"*" = automatic s	scaling for Y axis	
Conditions_rhic RHIC Beam Energy RHIC Beam Ions yellow beam ions STAR Magnet RHIC Scalers Conditions_rich RHICH Scalers	1e+96 800000					* †	rs1 rs2 rs3 rs4 rs5 rs5 rs6 rs7 rs8 rs8 rs8 rs10 rs11
Conditions_trg Conditions_ftpc FTPC Anode Voltages EAST FTPC Anode Voltages WEST FTPC Anode Currents EAST FTPC Anode Currents WEST FTPC Anode Currents WEST	40000			- - * * *	*	*	rs12
 FTPC Cathode Voltage and Current FTPC Temperatures Conditions_tpc Conditions_sc FTPC Temperatures Patform DAQ Room 	200000						

Bookkeeping and human level info

(calibration information)

entryTime	nodeID	elementID	beginTime		flavor	schemaID	deactive	barometricPressure	
2010-06-10 11:01:06	41	0	2010-06-10 10:3	5:00	ofl	1	0	1007.12945557	
2010-06-10 10:41:07	41	0	2010-06-10 10:2	5:00	ofl	1	0	1007.10498047	
2010-06-10 10:41:07	41	0	2010-06-10 10:0	5:00	ofl	1	0	1007.11749268	
2010-06-10 10:41:07	41	0	2010-06-10 09:4	5:00	ofl	1	0	1006.88397217	
2010-06-10 10:01:07	41	Fi	eld Name	Т	уре			Flags	
2010-06-10 09:41:07	41	dataID			t (11)	n		le_key auto_increment	
2010-06-10 09:41:07	41	entryTir	ne	times	tamp (19) not_null m	ultiple_key un	signed zerofill binary timest	
2010-06-10 09:41:07	41	nodeID		in	t (11)		not_null primary_key		
		elemen			nt (6)		not_null primary_key		
2010-06-10 09:01:07	41		<u>beginTime</u>		time (19)	/	/ not_null primary_key binary		
2010-06-10 08:41:07	41		<u>flavor</u>		ng (32)		not_null primary_key		
2010-06-10 08:41:07	41		<u>schemaID</u>		t (11)		not_null		
2010-06-10 08:41:07	41		deactive		t (10)		not_null primary_key unsigned		
		/	tricPressure		al (16)				
2010-06-10 08:01:07	41		<u>CGasPressure</u>		al (16)				
2010-06-10 07:41:06	41		<u>nPressure</u>		al (16)				
2010-06-10 07:41:06	41	_	sureDiff		al (16)				
			<u>sTemperature</u> asTemperature		al (16) al (16)				
			eArgon1		al (16) al (16)				
/			eArgon2	_	al (16)				
	a		eMethane		al (16)				
DB sense,	this		MethaneIn		al (16)				
مالح مع المعرب ما	-	ppmOxy			al (16)				
handles th	e		eExhaust		al (16)				
e M-D		percent	<u>MethaneOut</u>		al (16)				
		ppmWa	terOut	re	al (16)				
		nnmOx	/genOut	re.	al (16)				

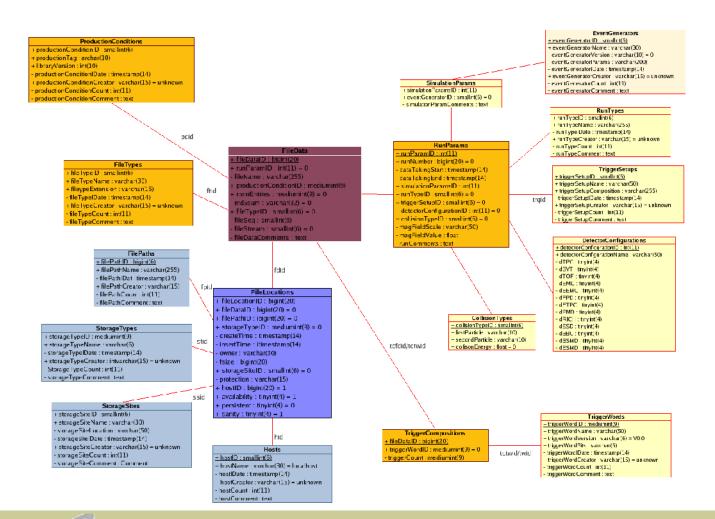
real (16)

Calibration as M-D pcGas example table

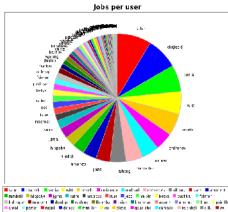
This would be return as an object

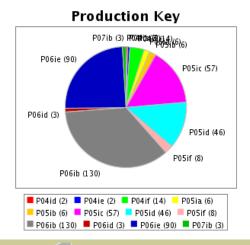
NATIONAL LABORATORY

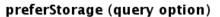
flowRateRecirculation

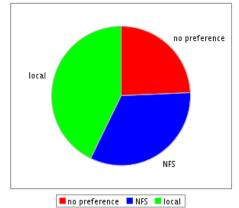

Bookkeeping and human level info (File catalog)

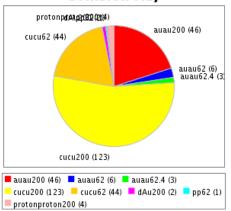
- File Catalog: A lose term including "some" of the real data M-D, file M-D, replica information. Usage is to define datasets along: global M-D → Files or Datasets → accessible replicas used for placing, locating, accessing datasets & ensure consistency (MD5), minimal quanta replication, etc ... (data management)
- Granularity: contains all files produced by STAR (online, offline, simulated or real data).
- Content examples and details:
 - Syntax is based on "give me this info considering those constraints"
 - Give me all files available at BNL for year 10 data, production P10ih and the sample passing "AuAu200 production"
 - Give me all possible trigger setup used in the year2010 run
 - Give me all event generator and version ever used in STAR as well as the total number of events generated by each of them
 - Nearly all user analysis start with a query to STAR's FileCatalog
 - API shield users entirely from field association context based
 - FC->set_context("name~physics||laser","trigger=AuAu200_minbias");
 - FileCatalog contains technical M-D in "dictionaries" (there are standardized tables of modest size 100th) and more complex relational tables (for example, list of triggers), queries are cached + FileCatalog has two main/core tables (File and Replica a.k.a. FileData and FileLocations)
 - Values in dictionaries are set at Tier0 but available everywhere
 - Each "site" responsible for updating its replica information (multi-master approach)
- Sizes and problems:
 - 18 M files, 40 M replicas, 11 GB
 - Problems: none fundamental so far
 - Selections on partial string slow [hiding sometimes make user think the impossible is possible from the start]
 - User tend to "wish" for event level M-D in it ...


Bookkeeping and human level info (File catalog)




NATIONAL LABORATORY

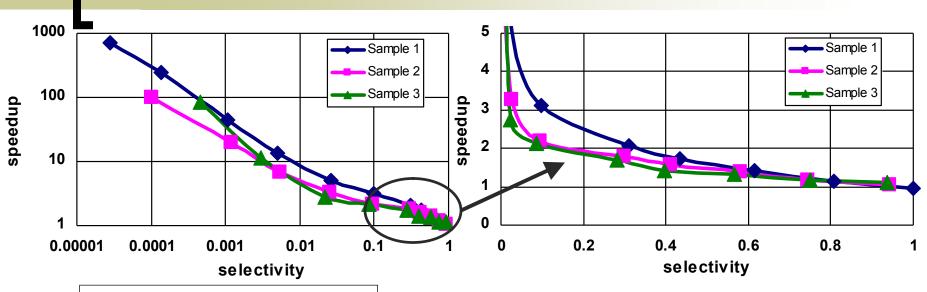

Bookkeeping and human level info (File catalog)

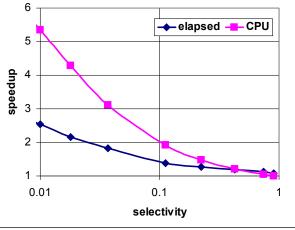

So an Annah Annah an Annah an Annah Annah

нн

NATIONAL LABORATORY

Bookkeeping and human level info (Tags)


- Tags: anything associated to event level information, may include detailed run information (by event) or data production information
- Granularity: event
 - Possibly huge (billion of events in Year 10 for STAR) implying selection AND storage could be a challenge
- Content examples and details:
 - **RunInfo** : M-D describing data taking and data production process for each run: run ID, beam parameters (composition, intensity, lifetime, polarization, fill ID, etc), STAR trigger detector rates, magnetic field, production version, time etc...
 - **EventInfo:** M-D describing each event: event ID, runID (for index search in case of merging), trigger Mask for the event, ...
 - **EventSummary** : M-D describing physics event. Information includes: number of tracks, number of good tracks, number of good primary tracks, number of positive/negative tracks, number of vertices, vertex types, mean pt, mean pt2, etc...
- Problems and sizes:


NATIONAL LABO

- This M-D could be considered the data stream (in for STAR) care is needed on what becomes external to the data (file, set) and what remains internal
- Format known as "TAG file" (STAR internal) used with ~15 parameters used per file for fast forward of events – no aggregation of data (1/20th per file still a lot)
- BitMap index techniques with 15 parameters or so a great success for a full run aggregation
- Anything else remains internal (analysis user select)

Bookkeeping and human level info (Tags)

The infrastructure related to this STAR (+SDM) developed & tried technology is not maintained. Main problems:

- new data production implies re-generation of tags
- adding a parameter \leftrightarrow merging (delay)
- biggest: user approach "the more the merrier" is a problem (size)

BROOKHAVEN

More on Meta-Data?

Atlas MetaData workshop, LSPC Grenoble/France, August 2010

Last thoughts & remarks

- Defining M-D and usage in STAR previous slides
- 2. Internally stored versus externally stored
 - If M-D (tag) can be stored in the data stream itself, do it (self-consistent)
 - Event information: runNumber, time data was taken, trigger, runType, ...
 - No reason to rely on an event ID ↔ external M-D association scheme (over-kill as analysis will likely need it at each event anyhow)
 - The more granular, more likely its place (whole of M-D) is internal
 - Location choices?
 - If M-D will change with time (a) internal may not the way (case of calibration data) and (b) reproducibility of data production MUST be ensured
 - If M-D is internal, it does NOT prevent it from being external. FC may contain internal information for bookkeeping and rapid dataset selections (runNumber, trigger setup, ...)
 - Operational choice?
 - If M-D is external and/or centralized, no workflow is self-sufficient
 - Ex:
 - Cloud data production from STAR + isolated resources + canned did not allow communication with external DB. Full DB 20 GB large not suitable for a VM
 - "DB snapshot" (< 0.5 GB) for Cloud portable in a VM Outcome: 12 Billion Pythia events generated over 400,000 CPU hours

Conclusions

Many kind of Meta-Data in STAR

- Structural and bookkeeping (human level operational or guiding information)
- Version evolution and strong yet flexible API design important from the start: users should not know + but users should be helped (schema browser, code generator)
- 3 APIs in STAR: Generic API + FileCatalog + Tags tuned for usage
- Pitfalls: Balance need to be achieved
 - Guiding Meta-Data could be large if not under control. General Run-time information, calibration,, Meta-Data and FileCatalog, event level information (tags)
- Features and approach
 - Provide all tools to users from day 1 shield them from details & provide version evolution + Flexibility & convenience
 - STAR API is 10 years old has served all the way and still working smoothly
 - STAR API allowed switching from Full DB to "DB snapshot"
 - WebService plug-and-play in operation as we speak ...
 - Provide tools: interfaces to browse, represent (graph), code generate for read/write, browser to inspect schema
 - Physics reproducibility requires multi-layers timestamps, flavors, ...
- Q should it be external or internal?
 - Internal to first order ↔ self-consistency (don't drop it)
 - In STAR, external event based (tags) have showed to be hardly maintainable (size & dynamic)
 - Could be multiple-sources combined (probably best at first)
 - Tags showed not to be practical may years through the program ...
 - DaqEventTag (also a form of tags) survived 7 years of running then dropped
 - External M-D has some impact on distributed computing processing
 - Cloud usage in STAR with Virtualization "self-canned" approach especially ...
 - Many services need locality ...

