

AMI, Metadata, and Software Infrastructure

David Malon
malon@anl.gov
30 August 2010
ATLAS AMI and Metadata Workshop

Introduction

- Assigned title seems to be "metadata: technology overview"
- Will not exactly be a technology overview
 - Lots of technologies related to metadata will not be discussed
 - But I do represent the software project side, not data preparation, not physics, not distributed analysis, ..., so I suppose I do bring a technological perspective
- Many technologies at work in support of metadata
 - ELSSI and TAGs for event-level metadata
 - COOL for interval-of-validity and lumi-block-level metadata
 - RunQuery as an interface thereto
 - XML DTDs as exchange formats (e.g., for Good Run Lists)
 - Relatively sophisticated in-file metadata infrastructure (storage, incident handling, ...)
 - AMI at the dataset level
 - Sources of metadata for AMI, tools that transport it, ...
- Possible focus on technology related to getting metadata into and out of AMI
 - But Solveig, who knows many aspects of this work better (and who wrote her slides earlier!), will cover much of this

David Malon U.S. ATLAS Physics Support and Computing Meeting

Earlier work

- Metadata and luminosity task forces
 - reasonable job of enumerating and classifying various kinds of metadata
 - and describing a few key requirements and use cases
- These task forces did not, however, provide much guidance on required tools or infrastructure or architecture
- Nonetheless, the collaboration has developed an array of tools that meet most of the needs foreseen in those efforts
 - Not always with an overarching architecture, but ...

Sources of metadata

- General consensus after AMI review: physics metadata about datasets should be in or mediated by AMI
 - As opposed to in middleware and DDM catalogs/databases
 - Includes higher-level datasets (physics containers, super-datasets; we used to talk about hierarchical datasets when the meaning was less limited (i.e., before they existed))
- There are always items on the boundary (is this datum a physics metadatum?)
 - Provenance is an example, but clearly provenance has a physics aspect, and should be recorded in AMI
- And there are physics metadata about files
- Review followups required some reverse engineering by AMI team to extract data from other sources (task request databases, production system databases, TO management databases, ...)
 - Not necessarily intended as a long-term strategy
 - Perhaps this workshop provides an opportunity to think about longer-term strategy to accomplish our collaborative goals

David Malon U.S. ATLAS Physics Support and Computing Meeting

Levels of metadata from production

- Some metadata known a priori
 - At task definition time
- Some metadata known only after the last job completes and output is checked/validated
- We mix these sometimes
- Some metadata are the same for all jobs in a task
- Some metadata are the same for all files written by a job
- Some metadata vary by file
- Currently, in distributed production, much of this metadata is reported redundantly, repeated for every file
 - We return far too much redundant metadata
- Improvements to reduce this were discussed and some were even coded, but apparently not put into production

Metadata transport

- Technologies for metadata transport are different for Tier 0 than for distributed production
 - Job report pickle files versus metadata.xml files, and so on
 - Metadata xml files are a legacy format: reuse of POOL file catalog DTD and its limited provisions for metadata
 - Alvin Tan proposed using Python dictionaries in place of xml files, but ...
- Metadata packaging and transport from jobs should probably be revisited

Task-level metadata and AMI

- Discussion at the time of the AMI review of a tighter integration of task request infrastructure and AMI
- Much dataset-level metadata is known at the time the task that will create the dataset is defined
- Introduction of configuration tags ("AMI tags") has been a major improvement in this direction
 - Configuration tags provide clear documentation of Athena configuration used to produce an output dataset

Transforms and metadata

- Metadata packaging for return to AMI (and elsewhere?) is handled largely at the transform level
- Transforms have grown into something of a control framework of their own
 - Production step sequencing, but also input file peeking for configuration, output postprocessing and limited validation of sorts, metadata handling
- Plans years ago to rationalize the transform infrastructure
- Slow progress for various reasons, and now the developer is leaving ATLAS
- An important part of transform improvements will be ensuring that metadata are correctly and robustly packaged and returned
 - Have seen problems here
- → Transforms generally, and metadata handling by transforms, need work

Metadata and files

- If you have a file, can you figure out what's in it?
 - Which release produced it, which runs and streams and lumi blocks are in it, ...
- If you don't have a file, can you figure out what you're missing?
- We're getting pretty good at the first of these
 - Lots of work on in-file metadata infrastructure and content
 - Even for eventless files (from sparse selections, etc.)
 - Example: ability to auto-configure jobs based upon file contents
- We're not quite as good at the second
 - But that's where AMI should help
- Lots of work on correct propagation of in-file metadata from input to output
 - {run, lumi block} ranges, for example
 - Can even merge N eventless files and get the metadata "right"
 - → Still some work needed to make this robust, though most standard cases are handled reasonably well

Metadata and auto-configuration

- Can largely auto-configure jobs to process data files by peeking at contents
- Have worked hard to make this robust
 - Can usually do this even when the first input file, or several, is/are eventless
- Over-reliance, perhaps, though, on peeking
- In most cases, it should be possible to configure all jobs in a task from task- and dataset-level metadata, before the first file is opened

Executing jobs and metadata

- Athena jobs have little access to metadata
 - Metadata about the input dataset? About the task?
 - In a simple {dataset in, dataset out} task, try to find out from inside Athena the name of the dataset to which the job's input file belongs
- Writing metadata? Suppose you want to add a metadatum to the output
 - There are several ways that information can get into the metadata.xml file
 - From inside Athena, none is pretty
 - There are no Services for this
- Data currently written from executing jobs can be iffy
 - Event counting seems inconsistent and data-product-dependent, for example
- → This is an area that needs thought, and work (thought first)

Sundry issues

- Have seen some issues with how job status and metadata are reported
 - Particularly for compound (multi-step) jobs
- Implications of this and other factors on correctness of dataset "ready" status
- Others will speak of this, I think
- Provenance remains limited and somewhat fragile
- Have seen cases, e.g., of AOD containing more events than ESD
 - Would be helpful if information in AMI could help us detect this and track this down
 - And if usable metadata could record this and similar issues
 - Would be even more helpful if our validity checks at several levels would find this early
- Input of simulation metadata seems fragile
 - And there are recurring issues related to use of run number in simulation
- File naming differences between Tier 0 and distributed production
 - Metadata in the file names is different
- Are the ways people use AMI different than one might have anticipated?
 - If most people start with a stream and period, for example, or a related container dataset, and apply a Good Run List late, or if they use their working group's D3PD, what is the role of AMI for them?

Malon U.S. ATLAS Physics Support and Computing Meeting

Would be nice ...

- Stream-dependent offline "quality" flags?
 - More generally, a means to flag files that are problematic or interesting or anomalous in some way
 - There is a start on this
- Can we answer questions like, does the AOD for period E2 contain AntiKt6H1TopoJets?
 - What is the EDM content of a given dataset?
 - Some kinds of queries/provenance questions are difficult without reading (running?) all the nested job options that went into a job's definition
- Remember History Objects?
 - Unless you are a core software or event data model developer, probably not
 - Object model support for event and object provenance
 - Probably overkill—but is there worthwhile middle ground here?

