Analyzing the Effect of Compiler Optimizations

89th ROOT PPP meeting

Jonas Hahnfeld

07/01/2021

eeeeeeeeeee
Computing

Motivation

- HPC applications run on multiple systems
— Different hardware architectures and configurations
— Varying software environments

— Write portable code and rely on compiler for optimizations

Analyzing the Effect of Compiler Optimizations | 89th ROOT PPP meeting
Jonas Hahnfeld | 07/01/2021

High I‘““III

Performance
Computing

Motivation

- HPC applications run on multiple systems
— Different hardware architectures and configurations
— Varying software environments

— Write portable code and rely on compiler for optimizations

- Reality shows: different compilers have different optimization strategies
— Due to different implementations, different heuristics, etc.

— Manifests in varying performance of the generated code

— No structured approach in literature to understand the effect of compiler optimizations

Analyzing the Effect of Compiler Optimizations | 89th ROOT PPP meeting

Jonas Hahnfeld | 07/01/2021 High RWTH

Performance
Computing

Motivation

- HPC applications run on multiple systems
— Different hardware architectures and configurations
— Varying software environments

— Write portable code and rely on compiler for optimizations

- Reality shows: different compilers have different optimization strategies
— Due to different implementations, different heuristics, etc.

— Manifests in varying performance of the generated code

— No structured approach in literature to understand the effect of compiler optimizations

- Workflow to locate and analyze such performance differences

Analyzing the Effect of Compiler Optimizations | 89th ROOT PPP meeting

Jonas Hahnfeld | 07/01/2021 High RWTH

Performance
Computing

(Part of the) Motivation for ROOT: RANLUX++

= 40r
= —
o u —+— GCC 8.3.1
e — Clang 9.0.1
= — * * T
qE} oF- —— GCC 7.5.0
o e * S PR assembly
E u
L *
- *
20 :— "
N * *
15 — *
H *
10— * *
o o il .. o]
5—
C | | | I I
initial unrolling overflow ~int128 carry
nalyzin Compiler Optimization (0]0) meetin
i Jonas Hahneld | 07012081 1o | o FOOT FPE meetng RWNTH

Performance
Computing

Overview of the Workflow

- Scenario:
— Two executables from unique build configurations

significant difference of total runtime

decompose function

Compare Executables Analyze Difference

W

sig. difference

compare
function

Improve Compiler Options & Code for Better Performance

4 Analyzing the Effect of Compiler Optimizations | 89th ROOT PPP meeting
Jonas Hahnfeld | 07/01/2021 High RWTH

Performance
Computing

Overview of the Workflow

- Scenario:
— Two executables from unique build configurations

significant difference of total runtime

decompose function

Compare Executables Analyze Difference

W

sig. difference

compare
function

Improve Compiler Options & Code for Better Performance

4 Analyzing the Effect of Compiler Optimizations | 89th ROOT PPP meeting
Jonas Hahnfeld | 07/01/2021 High RWTH

Performance
Computing

Overview of the Workflow

- Scenario:
— Two executables from unique build configurations

significant difference of total runtime

Ivi d functi
- Strategy: divide-and-conquer M
— Compare profiling data to find differences in functions s B e oy o
W
sig. difference compare
function

Improve Compiler Options & Code for Better Performance

Analyzing the Effect of Compiler Optimizations | 89th ROOT PPP meeting

Jonas Hahnfeld | 07/01/2021 High RWTH

Performance
Computing

Overview of the Workflow

- Scenario:
— Two executables from unique build configurations

- Strategy: divide-and-conquer
— Compare profiling data to find differences in functions
— Decompose functions to increase level of detail

significant difference of total runtime

decompose function

Compare Executables Analyze Difference
W

sig. difference compare

function

Improve Compiler Options & Code for Better Performance

Analyzing the Effect of Compiler Optimizations | 89th ROOT PPP meeting
Jonas Hahnfeld | 07/01/2021

High I‘““III

Performance
Computing

Compare Executables

significant difference of total runtime

profile
Compare Executables

recompile & profile

>| Compare Runtimes

recompile & profile

decompose
function

— inlining ' .

Adapt Inlining |< : Compare Profiles Analyze Difference
differs

. : compare

sig. difference P
function
Improve Compiler Options & Code for Better Performance
5 Analyzing the Effect of Compiler Optimizations | 89th ROOT PPP meeting
Jonas Hahnfeld | 07/01/2021 High RWTH

Performance
Computing

Compare Executables

significant difference of total runtime

profile
Compare Executables

recompile & profile

>| Compare Runtimes

recompile & profile

decompose
function

— inlining ’ .

Adapt Inlining |< : Compare Profiles Analyze Difference
differs

. : compare

sig. difference P
function
Improve Compiler Options & Code for Better Performance
5 Analyzing the Effect of Compiler Optimizations | 89th ROOT PPP meeting
Jonas Hahnfeld | 07/01/2021 High RWTH

Performance
Computing

Compare Executables

significant difference of total runtime

profile
Compare Executables

recompile & profile

>| Compare Runtimes

recompile & profile

decompose
function

— inlining ' .

Adapt Inlining |< : Compare Profiles Analyze Difference
differs

. : compare

sig. difference P
function
Improve Compiler Options & Code for Better Performance
5 Analyzing the Effect of Compiler Optimizations | 89th ROOT PPP meeting
Jonas Hahnfeld | 07/01/2021 High RWTH

Performance
Computing

Analyze Difference in Function

significant difference of total runtime

Analyze Difference

Disable Inlining

Outline Loops

|
recompile & profile ! ,\ .
g E
[Ol @ =19
| - (&) = ,_04
v A ! LE E
Compare Executables S F R D
: decompose | function
for each sig. .
- Analyze Function
difference
A
Compare Function

Improve Compiler Options & Code for Better Performance

—_—_a

6 Analyzing the Effect of Compiler Optimizations | 89th ROOT PPP meeting
Jonas Hahnfeld | 07/01/2021

High
Performance
Computing

RWTH

Analyze Difference in Function

significant difference of total runtime

Analyze Difference

Disable Inlining

Outline Loops

|
recompile & profile : Y .
| - B
[Ol @ = || ©
| - (&) = ,_Q
v A ! LE 8
Compare Executables SR (R D
: decompose | function
for each sig. .
- Analyze Function
difference
A
Compare Function

Improve Compiler Options & Code for Better Performance

]

6 Analyzing the Effect of Compiler Optimizations | 89th ROOT PPP meeting
Jonas Hahnfeld | 07/01/2021

High
Performance
Computing

RWTH

Analyze Difference in Function

significant difference of total runtime

Analyze Difference

Disable Inlining

Outline Loops

|
recompile & profile ! ,\ .
I g =
[Ol @ =19
| - (&) = ,_04
v A ! LE E
Compare Executables S F R D
: decompose | function
for each sig. .
- Analyze Function
difference
A
Compare Function

Improve Compiler Options & Code for Better Performance

—_—_a

6 Analyzing the Effect of Compiler Optimizations | 89th ROOT PPP meeting
Jonas Hahnfeld | 07/01/2021

High
Performance
Computing

RWTH

Example: LULESH

- Livermore Unstructured Lagrangian Explicit Shock Hydrodynamics
- Written in C/C++ and representative code structure

https://computing.llnl.gov/projects/co-design/lulesh

7 Analyzing the Effect of Compiler Optimizations | 89th ROOT PPP meeting
Jonas Hahnfeld | 07/01/2021

High RWTH

Performance
Computing

https://computing.llnl.gov/projects/co-design/lulesh

Example: LULESH

- Livermore Unstructured Lagrangian Explicit Shock Hydrodynamics

- Written in C/C++ and representative code structure

- Setup:
— Measurements on single core of an Intel Xeon Platinum 8160 (“Skylake”, 2.1 GHz)
— Profiling with Linux perf (cf. presentation by Guilherme)

https://computing.llnl.gov/projects/co-design/lulesh

Analyzing the Effect of Compiler Optimizations | 89th ROOT PPP meeting

Jonas Hahnfeld | 07/01/2021 High RWTH

Performance
Computing

https://computing.llnl.gov/projects/co-design/lulesh

Example: LULESH

- Livermore Unstructured Lagrangian Explicit Shock Hydrodynamics

- Written in C/C++ and representative code structure

- Setup:
— Measurements on single core of an Intel Xeon Platinum 8160 (“Skylake”, 2.1 GHz)
— Profiling with Linux perf (cf. presentation by Guilherme)

- Measurements:
— Clang 10.0.0: 93.4s

— Intel Compiler 19.1.1.217: 78.6 s

. . https://computing.llnl.gov/projects/co-design/lulesh
— Relative difference: ~ 16 %
7 Analyzing the Effect of Compiler Optimizations | 89th ROOT PPP meeting
Jonas Hahnfeld | 07/01/2021 High Rw.rH

Performance
Computing

https://computing.llnl.gov/projects/co-design/lulesh

LULESH: live demo

RWNTHAACHEN
S UNIVERSITY

LULESH: Summary

- Original measurement with Clang: 93.4 s
— Intel Compiler: 78.6s

- Add attribute always_inline t0 CalcElemShapeFunctionDerivatives
— Runtime improves by around 5% (88.7 s)

- Implement loop fusion portably in the source code
— Improves runtime with Clang to 80.4 s (another 9 %)

- Performance improvement of 14 % compared to original version

Analyzing the Effect of Compiler Optimizations | 89th ROOT PPP meeting
Jonas Hahnfeld | 07/01/2021 High RWTH

Performance
Computing

Possible Use Cases

- Main use case: performance tuning of portable applications

— Directly leads to parts of the code that can be improved

significant difference of total runtime

decompose function

Compare Executables Analyze Difference

for cach _~

sig. difference

compare
function

Improve Compiler Options & Code for Better Performance

10

Analyzing the Effect of Compiler Optimizations | 89th ROOT PPP meeting
Jonas Hahnfeld | 07/01/2021

High I‘““III

Performance
Computing

Possible Use Cases

- Main use case: performance tuning of portable applications
— Directly leads to parts of the code that can be improved

significant difference of total runtime

- Also possible: (see thesis for case study of miniMD)

— Analyze differences between two versions of the same compiler decompose function

Compare Executables Analyze Difference

for cach _~

sig. difference

— Use case: investigate regressions in optimization pipeline

compare
function

Improve Compiler Options & Code for Better Performance

10 Analyzing the Effect of Compiler Optimizations | 89th ROOT PPP meeting
Jonas Hahnfeld | 07/01/2021 High RWTH

Performance
Computing

Possible Use Cases

- Main use case: performance tuning of portable applications
— Directly leads to parts of the code that can be improved

significant difference of total runtime

- Also possible: (see thesis for case study of miniMD)

— Analyze differences between two versions of the same compiler decompose function

Compare Executables Analyze Difference

— Comparison of different compiler flags S_for each _~

— Use case: analyze individual optimizations and their parameters sig. difference

— Use case: investigate regressions in optimization pipeline

compare
function

Improve Compiler Options & Code for Better Performance

10 Analyzing the Effect of Compiler Optimizations | 89th ROOT PPP meeting
Jonas Hahnfeld | 07/01/2021 High RWTH

Performance
Computing

Possible Use Cases

- Main use case: performance tuning of portable applications

— Directly leads to parts of the code that can be improved

- Also possible: (see thesis for case study of miniMD)

— Analyze differences between two versions of the same compiler

— Use case: investigate regressions in optimization pipeline

— Comparison of different compiler flags

— Use case: analyze individual optimizations and their parameters

- Not investigated yet: mutually improve binaries

significant difference of total runtime

decompose function

Compare Executables Analyze Difference

for cach _~

sig. difference

compare
function

Improve Compiler Options & Code for Better Performance

— Promising for cases where no binary is the fastest for all functions

— ldea: choose the best of two in each case, improve overall performance

10

Analyzing the Effect of Compiler Optimizations | 89th ROOT PPP meeting
Jonas Hahnfeld | 07/01/2021

High I‘““III

Performance
Computing

	Motivation
	Workflow
	Example: LULESH
	Possible Use Cases

