
Analyzing the Effect of Compiler Optimizations

89th ROOT PPP meeting

Jonas Hahnfeld

07/01/2021



• HPC applications run on multiple systems
– Different hardware architectures and configurations

– Varying software environments

→ Write portable code and rely on compiler for optimizations

• Reality shows: different compilers have different optimization strategies
– Due to different implementations, different heuristics, etc.

– Manifests in varying performance of the generated code

– No structured approach in literature to understand the effect of compiler optimizations

• Workflow to locate and analyze such performance differences

Motivation

2 Analyzing the Effect of Compiler Optimizations | 89th ROOT PPP meeting
Jonas Hahnfeld | 07/01/2021



• HPC applications run on multiple systems
– Different hardware architectures and configurations

– Varying software environments

→ Write portable code and rely on compiler for optimizations

• Reality shows: different compilers have different optimization strategies
– Due to different implementations, different heuristics, etc.

– Manifests in varying performance of the generated code

– No structured approach in literature to understand the effect of compiler optimizations

• Workflow to locate and analyze such performance differences

Motivation

2 Analyzing the Effect of Compiler Optimizations | 89th ROOT PPP meeting
Jonas Hahnfeld | 07/01/2021



• HPC applications run on multiple systems
– Different hardware architectures and configurations

– Varying software environments

→ Write portable code and rely on compiler for optimizations

• Reality shows: different compilers have different optimization strategies
– Due to different implementations, different heuristics, etc.

– Manifests in varying performance of the generated code

– No structured approach in literature to understand the effect of compiler optimizations

• Workflow to locate and analyze such performance differences

Motivation

2 Analyzing the Effect of Compiler Optimizations | 89th ROOT PPP meeting
Jonas Hahnfeld | 07/01/2021



(Part of the) Motivation for ROOT:

3 Analyzing the Effect of Compiler Optimizations | 89th ROOT PPP meeting
Jonas Hahnfeld | 07/01/2021



• Scenario:
– Two executables from unique build configurations

• Strategy: divide-and-conquer

– Compare profiling data to find differences in functions

– Decompose functions to increase level of detail

significant difference of total runtime

Compare Executables Analyze Difference

Improve Compiler Options & Code for Better Performance

for each
sig. difference

decompose function

compare
function

Overview of the Workflow

4 Analyzing the Effect of Compiler Optimizations | 89th ROOT PPP meeting
Jonas Hahnfeld | 07/01/2021



• Scenario:
– Two executables from unique build configurations

• Strategy: divide-and-conquer

– Compare profiling data to find differences in functions

– Decompose functions to increase level of detail

significant difference of total runtime

Compare Executables Analyze Difference

Improve Compiler Options & Code for Better Performance

for each
sig. difference

decompose function

compare
function

Overview of the Workflow

4 Analyzing the Effect of Compiler Optimizations | 89th ROOT PPP meeting
Jonas Hahnfeld | 07/01/2021



• Scenario:
– Two executables from unique build configurations

• Strategy: divide-and-conquer
– Compare profiling data to find differences in functions

– Decompose functions to increase level of detail

significant difference of total runtime

Compare Executables Analyze Difference

Improve Compiler Options & Code for Better Performance

for each
sig. difference

decompose function

compare
function

Overview of the Workflow

4 Analyzing the Effect of Compiler Optimizations | 89th ROOT PPP meeting
Jonas Hahnfeld | 07/01/2021



• Scenario:
– Two executables from unique build configurations

• Strategy: divide-and-conquer
– Compare profiling data to find differences in functions

– Decompose functions to increase level of detail

significant difference of total runtime

Compare Executables Analyze Difference

Improve Compiler Options & Code for Better Performance

for each
sig. difference

decompose function

compare
function

Overview of the Workflow

4 Analyzing the Effect of Compiler Optimizations | 89th ROOT PPP meeting
Jonas Hahnfeld | 07/01/2021



significant difference of total runtime

Compare Runtimes

Compare ProfilesAdapt Inlining Analyze Difference

Improve Compiler Options & Code for Better Performance

profile

inlining

differs

recompile & profile

for each
sig. difference

decompose
function

recompile & profile

compare
function

Compare Executables

Compare Executables

5 Analyzing the Effect of Compiler Optimizations | 89th ROOT PPP meeting
Jonas Hahnfeld | 07/01/2021



significant difference of total runtime

Compare Runtimes

Compare ProfilesAdapt Inlining Analyze Difference

Improve Compiler Options & Code for Better Performance

profile

inlining

differs

recompile & profile

for each
sig. difference

decompose
function

recompile & profile

compare
function

Compare Executables

Compare Executables

5 Analyzing the Effect of Compiler Optimizations | 89th ROOT PPP meeting
Jonas Hahnfeld | 07/01/2021



significant difference of total runtime

Compare Runtimes

Compare ProfilesAdapt Inlining Analyze Difference

Improve Compiler Options & Code for Better Performance

profile

inlining

differs

recompile & profile

for each
sig. difference

decompose
function

recompile & profile

compare
function

Compare Executables

Compare Executables

5 Analyzing the Effect of Compiler Optimizations | 89th ROOT PPP meeting
Jonas Hahnfeld | 07/01/2021



significant difference of total runtime

Compare Executables

Disable Inlining Outline Loops . . .

Analyze Function

Compare Function

Improve Compiler Options & Code for Better Performance

for each sig.

difference

decompose function

fu
nc
ti
on

ca
lls

m
ul
ti
pl
e

lo
op

s

recompile & profile

Analyze Difference

Analyze Difference in Function

6 Analyzing the Effect of Compiler Optimizations | 89th ROOT PPP meeting
Jonas Hahnfeld | 07/01/2021



significant difference of total runtime

Compare Executables

Disable Inlining Outline Loops . . .

Analyze Function

Compare Function

Improve Compiler Options & Code for Better Performance

for each sig.

difference

decompose function

fu
nc
ti
on

ca
lls

m
ul
ti
pl
e

lo
op

s

recompile & profile

Analyze Difference

Analyze Difference in Function

6 Analyzing the Effect of Compiler Optimizations | 89th ROOT PPP meeting
Jonas Hahnfeld | 07/01/2021



significant difference of total runtime

Compare Executables

Disable Inlining Outline Loops . . .

Analyze Function

Compare Function

Improve Compiler Options & Code for Better Performance

for each sig.

difference

decompose function

fu
nc
ti
on

ca
lls

m
ul
ti
pl
e

lo
op

s

recompile & profile

Analyze Difference

Analyze Difference in Function

6 Analyzing the Effect of Compiler Optimizations | 89th ROOT PPP meeting
Jonas Hahnfeld | 07/01/2021



• Livermore Unstructured Lagrangian Explicit Shock Hydrodynamics

• Written in C/C++ and representative code structure

• Setup:
– Measurements on single core of an Intel Xeon Platinum 8160 (“Skylake”, 2.1 GHz)

– Profiling with Linux perf (cf. presentation by Guilherme)

• Measurements:
– Clang 10.0.0: 93.4 s

– Intel Compiler 19.1.1.217: 78.6 s

– Relative difference: ≈ 16 %

https://computing.llnl.gov/projects/co-design/lulesh

Example: LULESH

7 Analyzing the Effect of Compiler Optimizations | 89th ROOT PPP meeting
Jonas Hahnfeld | 07/01/2021

https://computing.llnl.gov/projects/co-design/lulesh


• Livermore Unstructured Lagrangian Explicit Shock Hydrodynamics

• Written in C/C++ and representative code structure

• Setup:
– Measurements on single core of an Intel Xeon Platinum 8160 (“Skylake”, 2.1 GHz)

– Profiling with Linux perf (cf. presentation by Guilherme)

• Measurements:
– Clang 10.0.0: 93.4 s

– Intel Compiler 19.1.1.217: 78.6 s

– Relative difference: ≈ 16 %

https://computing.llnl.gov/projects/co-design/lulesh

Example: LULESH

7 Analyzing the Effect of Compiler Optimizations | 89th ROOT PPP meeting
Jonas Hahnfeld | 07/01/2021

https://computing.llnl.gov/projects/co-design/lulesh


• Livermore Unstructured Lagrangian Explicit Shock Hydrodynamics

• Written in C/C++ and representative code structure

• Setup:
– Measurements on single core of an Intel Xeon Platinum 8160 (“Skylake”, 2.1 GHz)

– Profiling with Linux perf (cf. presentation by Guilherme)

• Measurements:
– Clang 10.0.0: 93.4 s

– Intel Compiler 19.1.1.217: 78.6 s

– Relative difference: ≈ 16 %
https://computing.llnl.gov/projects/co-design/lulesh

Example: LULESH

7 Analyzing the Effect of Compiler Optimizations | 89th ROOT PPP meeting
Jonas Hahnfeld | 07/01/2021

https://computing.llnl.gov/projects/co-design/lulesh


LULESH: live demo



• Original measurement with Clang: 93.4 s
– Intel Compiler: 78.6 s

• Add attribute always_inline to CalcElemShapeFunctionDerivatives
– Runtime improves by around 5 % (88.7 s)

• Implement loop fusion portably in the source code
– Improves runtime with Clang to 80.4 s (another 9 %)

⇒ Performance improvement of 14 % compared to original version

LULESH: Summary

9 Analyzing the Effect of Compiler Optimizations | 89th ROOT PPP meeting
Jonas Hahnfeld | 07/01/2021



• Main use case: performance tuning of portable applications
– Directly leads to parts of the code that can be improved

• Also possible: (see thesis for case study of miniMD)
– Analyze differences between two versions of the same compiler

– Use case: investigate regressions in optimization pipeline

– Comparison of different compiler flags

– Use case: analyze individual optimizations and their parameters

• Not investigated yet: mutually improve binaries
– Promising for cases where no binary is the fastest for all functions

– Idea: choose the best of two in each case, improve overall performance

significant difference of total runtime

Compare Executables Analyze Difference

Improve Compiler Options & Code for Better Performance

for each

sig. difference

decompose function

compare
function

Possible Use Cases

10 Analyzing the Effect of Compiler Optimizations | 89th ROOT PPP meeting
Jonas Hahnfeld | 07/01/2021



• Main use case: performance tuning of portable applications
– Directly leads to parts of the code that can be improved

• Also possible: (see thesis for case study of miniMD)
– Analyze differences between two versions of the same compiler

– Use case: investigate regressions in optimization pipeline

– Comparison of different compiler flags

– Use case: analyze individual optimizations and their parameters

• Not investigated yet: mutually improve binaries
– Promising for cases where no binary is the fastest for all functions

– Idea: choose the best of two in each case, improve overall performance

significant difference of total runtime

Compare Executables Analyze Difference

Improve Compiler Options & Code for Better Performance

for each

sig. difference

decompose function

compare
function

Possible Use Cases

10 Analyzing the Effect of Compiler Optimizations | 89th ROOT PPP meeting
Jonas Hahnfeld | 07/01/2021



• Main use case: performance tuning of portable applications
– Directly leads to parts of the code that can be improved

• Also possible: (see thesis for case study of miniMD)
– Analyze differences between two versions of the same compiler

– Use case: investigate regressions in optimization pipeline

– Comparison of different compiler flags

– Use case: analyze individual optimizations and their parameters

• Not investigated yet: mutually improve binaries
– Promising for cases where no binary is the fastest for all functions

– Idea: choose the best of two in each case, improve overall performance

significant difference of total runtime

Compare Executables Analyze Difference

Improve Compiler Options & Code for Better Performance

for each

sig. difference

decompose function

compare
function

Possible Use Cases

10 Analyzing the Effect of Compiler Optimizations | 89th ROOT PPP meeting
Jonas Hahnfeld | 07/01/2021



• Main use case: performance tuning of portable applications
– Directly leads to parts of the code that can be improved

• Also possible: (see thesis for case study of miniMD)
– Analyze differences between two versions of the same compiler

– Use case: investigate regressions in optimization pipeline

– Comparison of different compiler flags

– Use case: analyze individual optimizations and their parameters

• Not investigated yet: mutually improve binaries
– Promising for cases where no binary is the fastest for all functions

– Idea: choose the best of two in each case, improve overall performance

significant difference of total runtime

Compare Executables Analyze Difference

Improve Compiler Options & Code for Better Performance

for each

sig. difference

decompose function

compare
function

Possible Use Cases

10 Analyzing the Effect of Compiler Optimizations | 89th ROOT PPP meeting
Jonas Hahnfeld | 07/01/2021


	Motivation
	Workflow
	Example: LULESH
	Possible Use Cases

