Observation of the electroweak production of two same-sign W bosons in proton-proton collisions with the ATLAS detector

> **Chilufya Mwewa** Brookhaven National Laboratory African School of Physics Seminar Series

> > 16 February 2021

W[±]W[±]jj at ATLAS

My origin

• I was born and bred in Zambia.

Photo credit: emmausrdministries.org

 $W^{\pm}W^{\pm}jj$ at ATLAS

1st year at the University of Zambia

ASP 2010

My career path

July 2020 - October 2020: Postdoc at UCT; November 2020 to date: Postdoc at BNL.

W[±]W[±]jj at ATLAS

Opportunities

What is particle physics?

• The study of the fundamental building blocks of the universe and their interactions.

Photo credit: BBC-Earth

W[±]W[±]jj at ATLAS

Experimentalists: Particle smashers!

- Seek to prove/disprove theoretical predictions or discover something totally new.
- Get a part of the universe and smash it until we get to the smallest unbreakable piece.

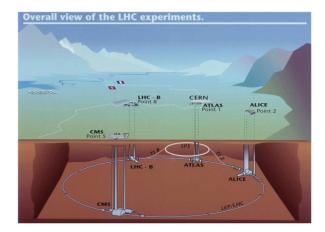
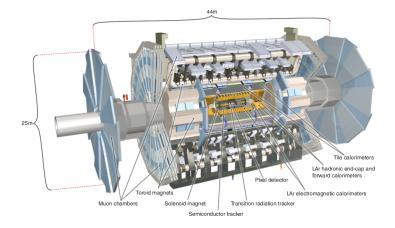
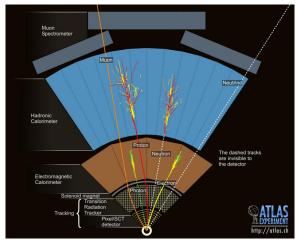


Photo credit: news.toyark.com $W^{\pm}W^{\pm}jj$ at ATLAS



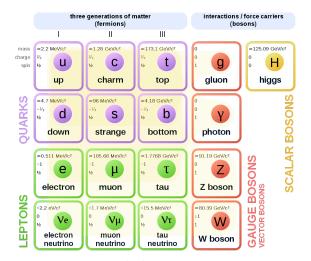
The Large Hadron Collider

• The largest particle accelerator ever built.

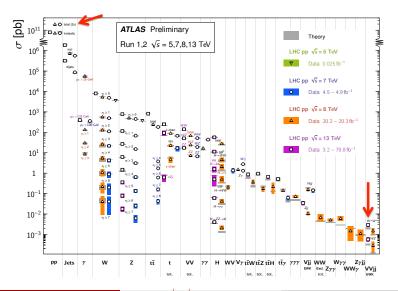

The ATLAS detector

$\mathsf{W}^\pm\mathsf{W}^\pm{}_{jj}$ at ATLAS

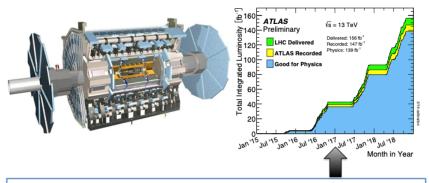
Particle identification


 Each particle emerging from the p - p collision leaves a distinct signature in the detector.

$W^{\pm}W^{\pm}jj$ at ATLAS


The Standard Model (SM)

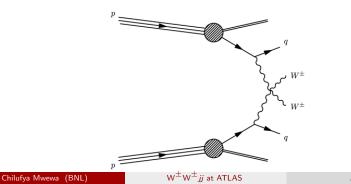
• Fundamental building blocks of the universe.



Chilufya Mwewa (BNL)

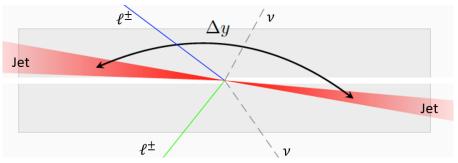
Overview of SM measurements in ATLAS

ATLAS data

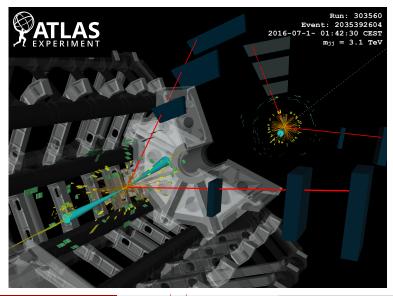

The total integrated luminosity recorded by ATLAS in 2015 and 2016 amounted to 36.1 fb⁻¹

LHC Run II: 2015-2018

Chilufya Mwewa (BNL)


$W^{\pm}W^{\pm}jj$: Motivation

- A rare process in the Standard Model (SM).
- Sector Boson Scattering (VBS): unitarity is violated at high \sqrt{s} in the absence of the Higgs.
 - Unitarity: Probabilities of all diagrams (processes) contributing to this should add up to one.
 - Provides a unique test of the SM ElectroWeak (EW) sector.



Event selection

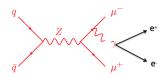
- Two same-charge leptons with high transverse momentum (p_T) .
- Large Missing Transverse Energy (E_T^{miss}) .
- Two forward jets with large dijet invariant mass (M_{jj}) and a large rapidity separation (Δy_{jj})

Event display

Background estimation

- $t\overline{t}$, W+jets, single top
- $t \rightarrow W + b$ -jet
- one lepton from the W
- another lepton from the b-jet
- estimated from data

- WZ, ZZ, VVV
- two same-charge leptons are picked up
- estimated from data and simulation


• $W^{\pm}W^{\mp}, V\gamma$

- one lepton is assigned a wrong charge
- γ is mis-identified as e
- estimated from data and simulation

QCD $W^{\pm}W^{\pm}$ estimated from simulation

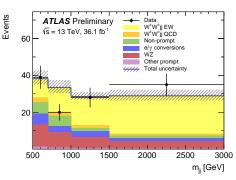
Background due to γ conversions in $V\gamma$

• We used a region dominated by $Z\gamma$ events with $Z \rightarrow \mu^+ \mu^-$ and $\gamma \rightarrow e^- e^+$.

Event selection

•
$$\mu^+\mu^- + e^\pm$$

•
$$E_T^{miss} < 30 \text{ GeV}$$


• 75
$$< M_{\mu\mu e} <$$
 100 GeV

- Obtained a Scale Factor (SF) by comparing data to $Z\gamma$ events. $SF = \frac{Data - OtherProcesses}{Z\gamma}$
- $V\gamma$ events in the signal region were scaled by SF.
- Uncertainty on SF was added as a systematic uncertainty.

Significance extraction (I)

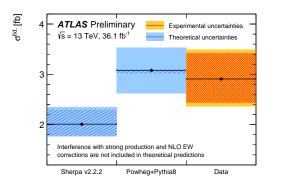
- Maximum likelihood fit: 4 bins of M_{jj}
- Inputs: Signal and background yields + systematics
- Expected number of events per m_{jj} bin:

$$N_i^{exp}(\theta) = \mu \cdot N_i^{sig}(\theta) + N_i^{bkg}(\theta)$$

 Probability of observing a particular number of data events per m_{jj} bin is given by a likelihood function:

$$L(\mu|\theta) = \prod_{i} Poisson(N_i^{obs}|N_i^{exp})$$

Significance extraction (II)

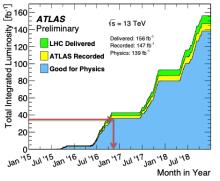

• Profile likelihood ratio is used as the test statistic.

$$q_{\mu}=-2$$
In $rac{L(\mu=0,\hat{ heta})}{L(\hat{\mu},\hat{ heta})}$

- p-value is used to quantify the compatibility between observed and expected data.
- p-value: Probability of observing a result as extreme as the test statistic, given that the background-only hypothesis is true.
- p-value $\leq 2.7 \times 10^{-7} \rightarrow \text{significance} \geq 5\sigma$

For this study, we had a 6.9σ observed significance

Cross section measurement


$$N = \sigma \times \mathcal{L}$$

$$\sigma_{obs} = 2.91^{+0.51}_{-0.47}$$
(stat) ± 0.23 (sys) fb

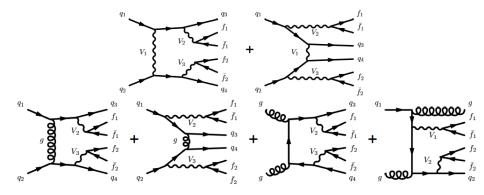
$W^{\pm}W^{\pm}jj$ at ATLAS

Summary

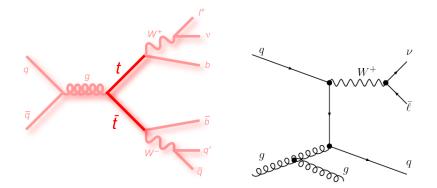
- My journey as an experimental particle physicist started at ASP2010.
- My PhD work: VBS EW production of $W^{\pm}W^{\pm}$ was observed by ATLAS at a significance of 6.9σ and a cross-section of 2.91 fb.



- Only 36.1 fb⁻¹ of ATLAS Run II data was utilized for this measurement.
- This analysis is being repeated on the full RunII data set.
- More statistics ⇒ higher precision!!


\star Check this link for details on the results shown in this talk

Back up


Same sign WW EW VBS production

Same sign WW EW non-VBS and QCD production

$t\bar{t}$ and W+jets

Same sign WW analysis selections

event cleaning
exactly two signal leptons with $p_T > 27$ GeV and the same electrical charge
with $ \eta < 2.5$ for muons and
with $ \eta < 2.47$ excluding $1.37 \le \eta \le 1.52$ for electrons
with $ \eta < 1.37$ in the <i>ee</i> channel
$m_{\ell\ell'} \ge 20 \text{ GeV}$
remove events with three or more preselected leptons
$ m_{ee} - m_Z > 15$ GeV in the <i>ee</i> -channel
$E_{\rm T}^{\rm miss} \ge 30 { m GeV}$
at least two jets
leading and subleading jets satisfying $p_T > 65$ GeV and $p_T > 35$ GeV, respectively
$m_{jj} \ge 200 \text{ GeV}$
b-jet veto using the MV2c10 tagger with the 85% efficiency working point
$ \Delta y_{jj} > 2$

Pre-fit yields

	e^+e^+	e^-e^-	$e^+\mu^+$	$e^-\mu^-$	$\mu^+\mu^+$	$\mu^{-}\mu^{-}$	combined
WZ	1.7 ± 0.6	1.2 ± 0.4	13 ± 4	8.1 ± 2.5	5.0 ± 1.6	$3.3~\pm~1.1$	32 ± 9
Non-prompt	4.1 ± 2.4	2.3 ± 1.8	9 ± 6	6 ± 4	0.57 ± 0.16	0.67 ± 0.26	23 ± 12
e/γ conversions	1.74 ± 0.31	1.8 ± 0.4	6.1 ± 2.4	3.7 ± 1.0	-	-	13.4 ± 3.5
Other prompt	0.17 ± 0.06	0.14 ± 0.05	0.90 ± 0.24	0.60 ± 0.25	0.36 ± 0.12	0.19 ± 0.07	2.4 ± 0.5
$W^{\pm}W^{\pm}$ jj strong	0.38 ± 0.13	0.16 ± 0.06	$3.0~\pm~1.0$	$1.2~\pm~0.4$	$1.8~\pm~0.6$	0.76 ± 0.26	$7.3~\pm~2.5$
Expected background	$8.1~\pm~2.4$	$5.6~\pm~1.9$	32 ± 7	20 ± 5	$7.7~\pm~1.7$	$4.9~\pm~1.1$	78 ± 15
$W^\pm W^\pm {\rm jj}$ electroweak	3.80 ± 0.30	1.49 ± 0.13	$16.5~\pm~1.2$	$6.5~\pm~0.5$	$9.1~\pm~0.7$	$3.50\pm~0.29$	$40.9~\pm~2.9$
Data	10	4	44	28	25	11	122