Contribution ID: 58

Type: Talk

Measurement of the ⁸⁸Sr⁺ $S_{1/2} \rightarrow D_{5/2} / {}^{171}$ Yb⁺ $S_{1/2} \rightarrow F_{7/2}$ frequency ratio with in-situ BBR shift evaluation

Wednesday, 29 June 2022 10:08 (22 minutes)

A significant contribution to the uncertainty budgets of optical clocks based on the 171 Yb⁺ $S_{1/2} \rightarrow F_{7/2}$ electric octupole (E3) transition results from the Stark shift induced by black-body radiation (BBR) of the environment of the trapped ion. Even if precise knowledge on the thermal environment is available, uncertainty in the sensitivity of the shift to thermal radiation, the differential polarizability $\Delta \alpha$ of the E3 transition, limits a shift evaluation to 2%. For the $S_{1/2} \rightarrow D_{5/2}$ electric quadrupole (E2) transition of 88 Sr⁺ $\Delta \alpha$ is known to 0.15% [1]. By trapping both atomic species in a linear segmented ion trap and irradiating infrared laser light of the same intensity on both the 88 Sr⁺ E2 and 171 Yb⁺ E3 while monitoring their transition frequencies, permits a transfer of the relative uncertainty of $\Delta \alpha$ from 88 Sr⁺ to 171 Yb⁺.

In preparation to this experiment, the ratio of the unperturbed frequencies of the ⁸⁸Sr⁺ E2 transition and the ¹⁷¹Yb⁺ E3 transition is measured. Since the ⁸⁸Sr⁺ E2 is prone to BBR shifts, the thermal field at the position of the ion must be evaluated. While the ambient temperature of the vacuum chamber can be determined with low uncertainty, the effect of the temperature rise during operation needs to be evaluated independently. Under the assumption, that the heating of the trap results from Joule heating and a T^4 -dependence of the BBR shift, the temperature can be inferred from measurements with different settings of the applied trap drive power. In this way, we determine the frequency of the ⁸⁸Sr⁺ E2 transition for three different settings relative to an independent clock based on the ¹⁷¹Yb⁺ E3 transition. Within the statistical uncertainty, we find no significant change in the ratio and can determine its value with a fractional uncertainty of 8.0×10^{-17} . With the currently best-known frequency of the ¹⁷¹Yb⁺ E3 transition [2], the absolute ⁸⁸Sr⁺ E2 frequency is evaluated to an uncertainty of 80 mHz.

Primary authors: STEINEL, Martin (Physikalisch-Technische Bundesanstalt); SHAO, Hu (Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig, Germany); FILZINGER, Melina (Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig, Germany); HUNTEMANN, Nils (Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig, Germany); LANGE, Richard (Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig, Germany); LIPPHARDT, Burghard (Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig, Germany); MEHLSTÄUBLER, Tanja (Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig, Germany); TAMM, Christian (Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig, Germany); PEIK, Ekkehard (Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig, Germany); PEIK, Ekkehard (Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig, Germany); PEIK, Ekkehard (Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig, Germany); PEIK, Ekkehard (Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig, Germany); PEIK, Ekkehard (Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig, Germany); PEIK, Ekkehard (Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig, Germany); PEIK, Ekkehard (Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig, Germany); PEIK, Ekkehard (Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig, Germany); PEIK, Ekkehard (Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig, Germany); PEIK, Ekkehard (Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig, Germany); PEIK, Ekkehard (Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig, Germany); PEIK, Ekkehard (Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig, Germany); PEIK, Ekkehard (Physika

Presenter: STEINEL, Martin (Physikalisch-Technische Bundesanstalt)

Session Classification: Precision Spectroscopy

Track Classification: Atomic Clocks