DØ Trigger Matters

Rick Jesik Imperial College London

IoP HEPP Group meeting:
"Tevatron for LHC"
31/1/07

The DØ Runll detector

 Muon system with good coverage |η|<2 and excellent shielding Excellent tracking coverage

Silicon Tracker: |η|<3

Fiber Tracker: |η|<1.6

The DØ Runllb trigger

Level 1 trigger system

- Central Track Trigger (CTT) uses axial layers of the Central Fiber Tracker
 - provides track terms in 4 pT bins, isolation terms, and sends track lists to L1 cal and L1 muon
- Calorimeter
 - course 0.2 x 0.2 eta-phi towers
 - Cal-CTT match (L1 tau trigger now!)
- Muon
 - Scintillator and wire hits
 - Muon-CTT match
- No silicon
- Pass rate of 2 kHz set by silicon digitization (no extra event buffer) and muon readout (5% busy)

Level 2 trigger system

- Silicon track trigger
 - Better track pT resolution
 - Primary vertex finding
 - Track impact parameter significance terms
- L1 Muon and Calorimeter (jet and electron) objects are refined
- Global variables allowing combinations of objects
- Must provide at least a factor of 2 rejection to get to output rate limit of 1 kHz, set by precision calorimeter readout and level 3 cpu considerations

Level 3 trigger system

- Software triggers run on Linux pc farm 200 nodes now, additional nodes arriving soon
- Provides fast reconstruction of the event all physics objects
 - Muons,
 - Electrons,
 - Jets,
 - Tracks,
 - Taus,
 - MET,
 - Isolation,
 - Vertexing,
 - B-tagging,
 - Isolation,
 - Invariant mass,
 - And any combination of the above

Rate to tape speed limit

- The DØ data acquisition system could write as much as 200-300 Hz to tape (depending on event size).
- We have, however, decided to limit our rate to tape to an average of 50 Hz
 - Tape cost
 - Offline reconstruction speed we want to be able to look at this data in a reasonable amount of time.
 - Reprocessing time our reconstruction code is an evolving entity.
 The more data we take, the more we learn. And we do sometimes make mistakes. Almost all of the 2 fb⁻¹ of data we have taken so for has (or will be) reprocessed at least once.
- But speed limits are meant to be broken....

Trigger examine

- Real time monitoring of trigger object distributions in the control room (and on the web).
 - Histograms are filled extremely fast

Real time, fast problem diagnosis

silicon readout problems

Trigger database

- Oracle database all official trigger lists stored in and built from
 - expert only database entry quite complex and tedious in general.
 Recent development has helped with some of this, but sometimes that has bumped up against practical needs.
 - also provides reports and descriptions to non expert physicists

Trigger List Report Permanent Link Trigger List Name input: [intlname, intlversion] = [GLOBAL_CMT, 15.30] TRIGGER LIST Name/Version= global CMT / 15.30, Use_Status= unused, Current_Status= local Implementation in: primary DAQ system, Configuration Type = physics, autopause = yes, comics_runtype = data, 13_type = regular, num_nodes = 0, Trigger_count = 612, Link to RunsDB using Created by Mverzocc on 2007-01-22 14:48:53 Description: Derived from global_CMT-15.29 Triggerlist version number changed to reflect the firmware change done to increase the rate of the Cal_unsuppressed trigger. Group 1 allcrates / 1 regular 0 L1 Cal Trigger Tower Programming (L1Dialog): Config TAB algorithms L1 detector Neotypes: CFT/CPS Calorimeter Special (Named) And/Or ctt/2.00 (Link to Neoterms) em/2.00 iso em/2.00 jet/2.00 miss et/2.00 nco/1.00 tau/2.00 mu2b/1.00 specterm/2.00 **MUON** RANDOMPASS TRACK TRACK TRACK TRACK TRACK emcalib <u>calcalib</u> filters: EM \mathbf{EM} EM**EM** EM**ETA** TRACK EM **ETA** TRACK TRACK TRACK EM ETA **ETA** TRACK EM TRACK EM \mathbf{EM} **ETA** TRACK EM **ETA** TRACK EM **ETA** TRACK \mathbf{EM} **ETA** TRACK EM ETATRACK \mathbf{EM} **ETA** TRACK \mathbf{EM} **ETA** TRACK EM JET **ETA** EM**ETA** TRACK EM **ETA** TRACK EM **ETA PHISEP TAU ETA PHISEP** TAU **ETA** PHISEP ETA TRACK EM MUON TRACK **MUON MUON** MUON ETAPHISEP MUON **ETA EM EM ETA** TRACK EM **JET JET JET** TRACK **ETA** TAU PHISEP TAU ETA PHISEP TAU **ETA** PHISEP ETA HT**JET ETA** MJT PHISEP **JET** HT**Spher** HT **MJT** PHISEP PHISEP TAU **ETA** PHISEP ETA **ETA ETA JET** MJT **JET** PHISEP ETA PHISEP ETA ETA**TAU ETA** TAU ETA **ETA ETA** JET INVMASS JET **ETA** TAU INVMASS INVMASS INVMASS TRACK TRACK TRACK

DØ trigger management

- Trigger Board all decisions regarding triggers are made by this body which meets every week.
 - Trigger Board Chair (makes final decisions in case of disputes)
 - 2 Trigger Meisters who provide 24 hr operational support and implement triggers and prescale sets.
 - Each physics group provides a representative
 - Spokespersons, run coordinators, trigger algorithm leaders, and "at large" members also participate.
 - Its not easy to satisfy everyone and these are some of the most heated meetings we have, but this setup has worked fairly well for us.
- Trigger Studies Group also meets every week.
 - Provides forum for more technical discussions, common tools, and object based efficiency calculations across physics groups (helps avoid duplicate work)

Trigger list design

- Complex problem balancing various physics needs with rate limits and available cpu power, hardware upgrades, and algorithm development
- Constant process keeping up with the accelerator rate limits remain the same, but the instantaneous luminosity increases
- Design tools
 - TrigSim full blown (up) trigger simulator expert use only
 - Trigger Rate Tool rate predictions based on data
 - Works great except for non-linearities
- Recent development time on the order of a year and resulting trigger list is often obsolete by the time it is perfected.
 - The present trigger list (v15) was initially designed to work up to luminosities of 200E30. The final L1/L2 suite has just now been implemented and the L3 suite is still being optimized - we are regularly getting stores starting around 250E30

Trigger list evolution

- That's right, we are on our 15th major trigger list revision
 - Well to be fair, we started taking physics data with version 8
- To make matters worse, there are 10 to 20 minor changes to each, along with several prescale set changes.
- In the pursuit of increased efficiency and redundancy, our trigger lists are quite complex - some say out of control
 - Present list has 612 triggers, about half of which are single electron triggers
 - All possible combinations of pT thresholds (hi, med, low) track matches, preshower reqs, isolation, shower shape, etc.
- Trigger efficiency calculations are, needless to say, quite complex. In practice only a trigger few combinations have been used for physics analyses so far.

Present trigger strategy

- At high instantaneous luminosities, high pT triggers dominate with a few B physics triggers running which are very tight (muon + tracks with significant impact parameters), as the luminosity decreases, the looser B physics triggers are turned on and they dominate the available bandwidth to tape.
- We presently can not run the L3 tracking down to a pT threshold of 0.5 GeV due to L3 cpu consumption at the very highest luminosity (above 200E30) and the single muon triggers with pT thresholds of 5 GeV start to explode at L1 at luminosities above 250E30, so these triggers are highly prescaled here.

A recent store

Try not to ruin your triggers just so they run in the first hour of the store, but...

The luminosity dilemma

 the first hour of today's store is the medium luminosity operation point of next year

- We need high instantaneous luminosity to find the Higgs, etc., but we are reaching the limits of our abilities to trigger effectively
 - L1 track triggers are expected to saturate and fire for every event at 300E30, that's a loss of a factor of 5 rejection.
 - Single muon and electron rates go through the roof
 - Occupancy veto's are under investigation

L3 tracking distributions at 200E30

L3 tracking efficiency vs. lumi

- 60E30, $\varepsilon = 80\%$
- 90E30, $\varepsilon = 75\%$
- 150E30, ε = 67%

Time taken by L3 tracking is going, going,

Even with a factor of 3 speed up over the previous version

L3 isolation at hi luminosity

 Isolation requirements also have problems at very high luminosity

New trigger strategy

- New trigger list design has begun aimed to run at a luminosity of 400E30, which we have seen is highly problematic
 - To maintain efficiency for Higgs and new phenomena triggers, sacrifices to basic physics program during hi luminosity running will have to be made
 - B physics, precision electroweak, even low deltaM searches will suffer, if stores do not last long enough
 - Occupancy cuts will have to be implemented
 - Luminosity leveling is being discussed with the accelerator experts

Conclusions

- Triggering in high energy hadronic collisions is a difficult, challenging, never-ending, thankless task
- But, it is one of the most important tasks in getting at the physics
 - It's a dirty job, but someone has to do it
- We are learning a lot at the Tevatron and are excited about transferring our knowledge and experience to the LHC.