

Status of D2 field quality and of D2 corrector field quality

E. Todesco,

A Foussat, P. Fabbricatore, S. Farinon, A. Pampaloni, B. Caiffi, F. Levi, A. Bersani, L. Fiscarelli, et alG. Kirby, A. Musso, J. C. Perez, et al.

WP2 - 26 January 2021

- D2 status
- D2 corrector news

SHORT MODEL MEASUREMENTS

• Where are we with the model (1 aperture measured at 1.9 K)

	NCS	CTR	CS		NCS	CTR	CS		NCS	CTR	CS
	Injection			Geometric			Nominal				
n	bn										
2	-49.85	-5.76	-11.12		-50.10	-5.38	-9.95		-70.86	-8.65	-19.89
3	0.31	-8.12	12.65		16.36	8.48	29.86		24.19	12.12	38.89
4	1.57	-0.89	5.31		2.68	0.08	6.49		3.92	0.35	8.11
5	2.22	8.39	15.25		3.30	9.04	16.15		2.84	9.48	17.15
6	2.01	1.68	2.55		2.22	1.84	2.91		2.46	2.02	3.3
7	-7.88	-0.07	0.41		-6.96	0.69	1.31		-7.59	1.03	1.74
8	0.30	0.47	0.52		0.35	0.50	0.55		0.39	0.60	0.65
9	-2.78	0.83	0.34		-2.88	0.64	0.18		-3.25	0.72	0.23
10	-0.34	-0.66	-0.50		-0.36	-0.67	-0.48		-0.46	-0.81	-0.52
11	-2.08	-1.02	-1.31		-2.00	-0.92	-1.19		-2.19	-0.96	-1.23
12	0.82	0.82	0.40		0.77	0.76	0.35		0.83	0.82	0.34
13	-1.34	-1.25	-1.35		-1.34	-1.23	-1.35		-1.48	-1.36	-1.48
14	0.32	0.31	0.21		0.33	0.32	0.21		0.38	0.36	0.24
15	-0.65	-0.79	-0.71		-0.64	-0.76	-0.69		-0.73	-0.87	-0.7
n					an						
2	5.09	-2.88	-5.98		5.39	-1.94	-5.28		4.71	-2.44	-5.2
3	-2.35	2.23	6.17		-2.54	1.50	4.44		-2.14	1.95	5.2
4	-1.26	-0.99	0.98		-0.57	-0.38	1.30		-0.99	-0.73	1.03
s	-0.13	-0.62	1.54		-0.01	-0.51	1.36		-0.01	-0.46	1.49
6	0.20	-0.91	-0.75		0.49	-0.63	-0.60		0.27	-0.73	-0.5
7	-0.49	-0.79	-0.62		-0.50	-0.82	-0.63		-0.46	-0.71	-0.55
8	0.21	-0.54	0.34		0.34	-0.37	0.46		0.25	-0.44	0.35
9	-0.29	-0.20	0.29		-0.29	-0.16	0.26		-0.26	-0.17	0.25
10	0.18	-0.33	-0.57		0.18	-0.25	-0.50		0.18	-0.26	-0.49
11	-0.31	-0.26	-0.46		-0.35	-0.29	-0.43		-0.30	-0.25	-0.43
12	0.37	0.09	-0.17		0.35	0.13	-0.11		0.34	0.10	-0.13
13	-0.34	-0.27	-0.25		-0.32	-0.25	-0.24		-0.31	-0.24	-0.23
14	0.17	0.06	-0.08		0.17	0.07	-0.06		0.17	0.07	-0.00
15	-0.14	-0.17	-0.30		-0.13	-0.16	-0.27		-0.12	-0.15	-0.25

1-1

SHORT MODEL MEASUREMENTS

-10 + 0

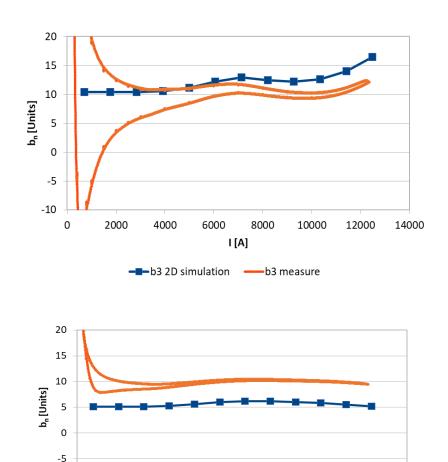
2000

4000

6000

I [A]

b5 2D simulation ____b5 measure


8000

10000

14000

12000

- Focus on b3 and b5
 - Values at nominal:
 - b₃: 12.1 units
 - b₅: 9.5 units
 - b₇: 1.0 units
 - b₉: 0.7 units
 - Geometric:
 - b₃: 8.5 units
 - b₅: 9.0 units
 - b₇: 0.7 units
 - b₉: 0.6 units

FROM SHORT MODEL TO PROTOTYPE

- Short model had a non nominal shimming on the midplane
 - 0.15 mm missing
 - Giving + 8 units of b_3 , + 4 units of b_5 , +1.5 units of b_7
 - (the sensitivity matrix of multipoles on shim is given in slide 7)
- Measured values at 12 kA
 - b₃: 12.1 units
 - b₅: 9.5 units
 - b₇: 1.0 units
- Expected values at 12 kA with nominal shimming
 - b₃: 4.1 units
 - b₅: 5.5 units
 - b₇: -0.5 units

FROM SHORT MODEL TO PROTOTYPE

- Prototype variation of cross section (via copper wedges)
 - b₃: -4 units
 - b₅: -4 units
 - b₇: 1 units
- Expected values prototype at 12 kA with nominal shimming
 - $b_3: 4.1-4 = \sim 0.0$ units
 - $b_5: 5.5-4 = \sim 1.5$ units
 - b_7 : -0.5+1=~0.5 units

PROTOTYPE SHIMMING

- Coil is 0.4 mm too large, so we have to reduce either on the pole or on the midplane
 - Series coils are likely to be the same coil size
- Sensitivity matrix calculation

	0.1 mm mor	e on midpl	ane	0.1 mm more on pole			
	Ansys	Roxie	Bio	Ansys	Roxie	Bio	
Δb_3	-5.2/6.9	-6.40	-5.42	5.00/3.89	4.80	4.49	
Δb_5	-2.35/2.95	-2.85	-2.81	-0.08/0.63	-0.63	0.13	
Δb_7	-0.94/0.97	-1.02	-1.00	0.20/-0.21	0.10	-0.18	
Δb_9	-0.39/0.39	-0.42	-0.39	-0.04/-0.04	-0.05	-0.03	
Δb_{11}			-0.16			0.10	

- Pole shimming is less sensitive on high orders
- b5 dependence on pole shimming looks difficult to compute, sign of a possible sensitivity on hypothesis on how the deformation is done

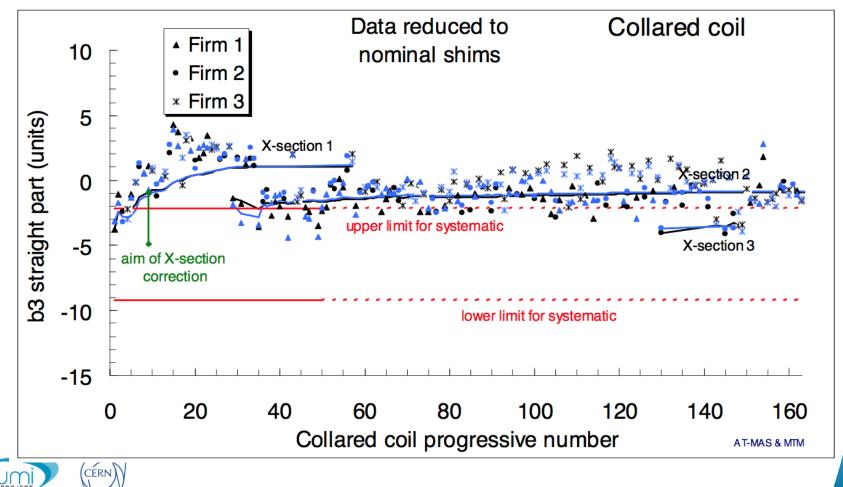
PROTOTYPE SHIMMING

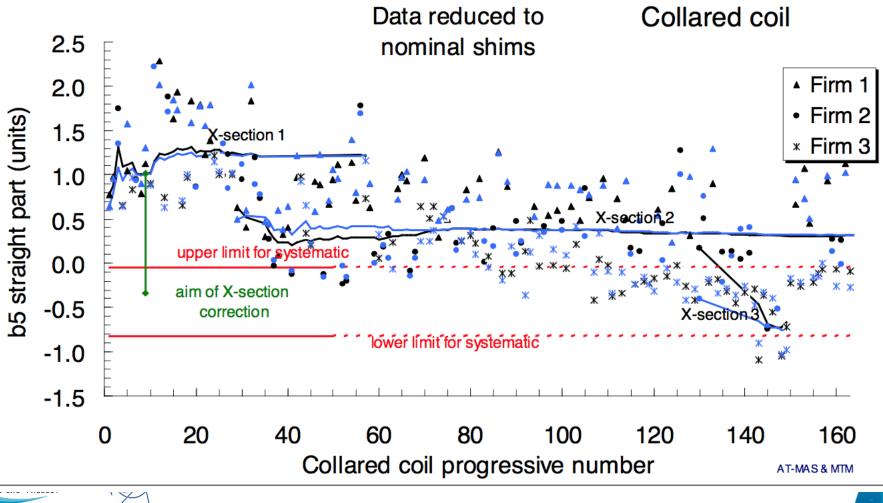
- The excess of 0.4 mm in the coil size will be compensated in the prototype via 0.125 mm less on midplane and 0.25 mm less on the pole
 - It is a comprimise on getting not too far from zero for both b3 and b5, and it is expected to give
 - Δb_3 : -4 units
 - Δb_5 : 3 to 5 units
 - Δb_7 : 1 units
- Therefore for the prototype we should land on
 - b₃: -4 units
 - b₅: 5 to 7 units
 - **b**₇: 2 units

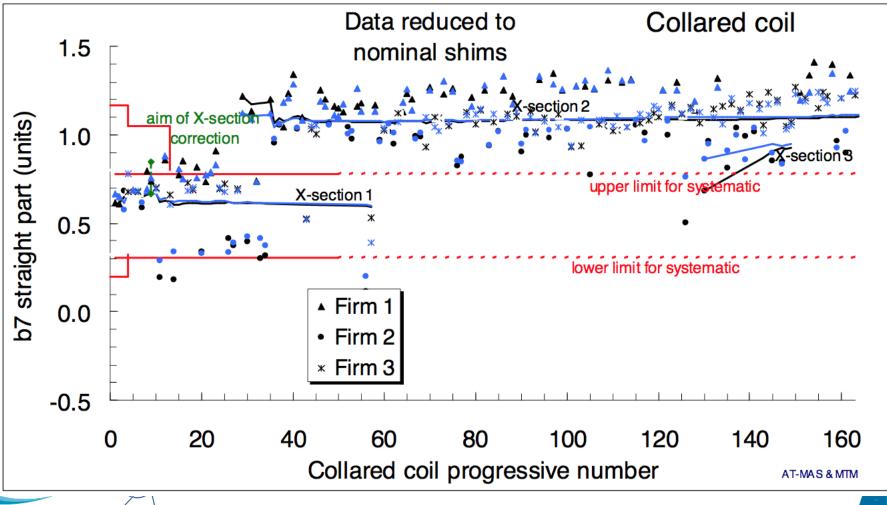
- Actions on prototype were limited by the availability of polyimide thicknesses lower than 0.125 mm
 - We are ordering different thicknesses (0.075 mm) to be able to better tune in the future
 - Moving 0.05 mm from midplane to pole gives a +5 units displacement of b₃, and 1.0 to 1.5 more units of b₅
 - If b₃ in the prototype is within 10 units it should be not difficult to move it towards zero
 - But to reduce b5 we have to push further down b3

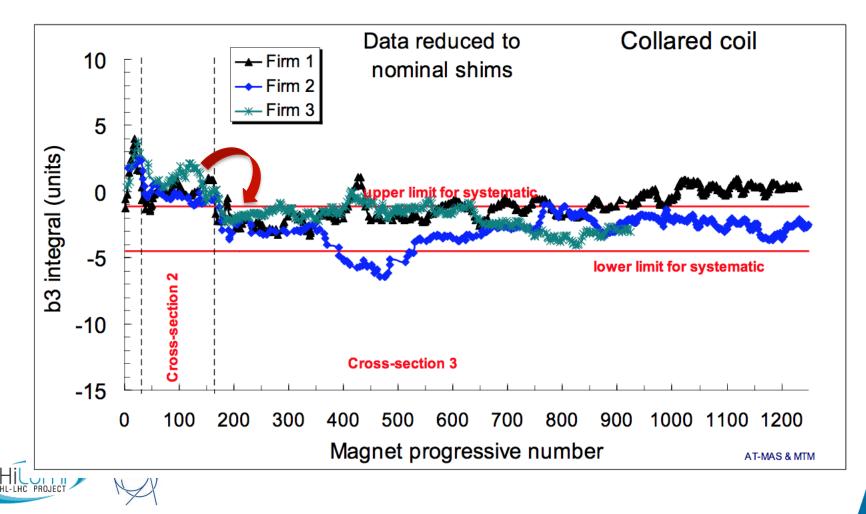
	0.1 mm more on midplane	0.1 mm more on pole	0.1 mm less on midplane and more on pole		
	Best estimate	Best estimate	Best estimate		
Δb_3	-6.0 (-5.5 to -7.0)	4.5 (4.0 to 5.0)	10.5		
Δb_5	-2.8	-0.6 or 0.1 ?	-2.2 or -2.9		
Δb_7	-1.0	Less than 0.2	1.0		
'YI					

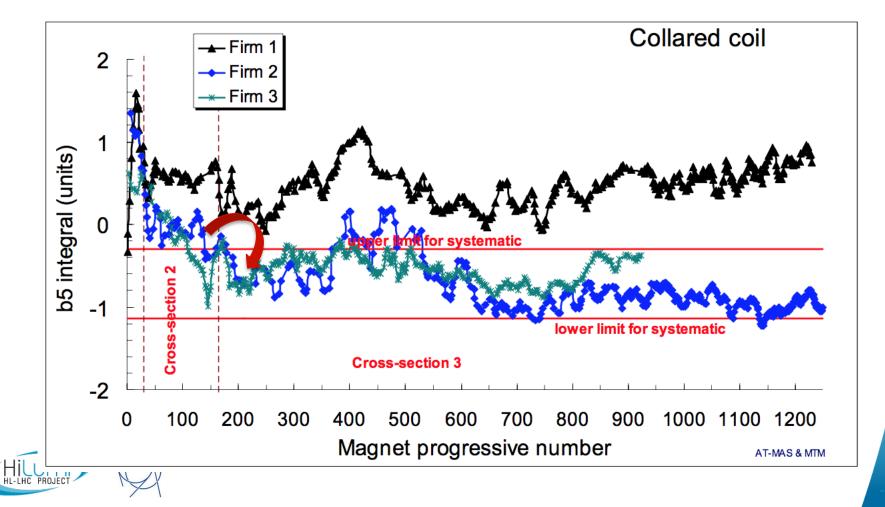
- If b₅ confirms to be much larger than 3 units, coupled with a b₃ of about -5 units, we could be in a corner
 - We could recover b₃ around zero at the price of further increasing b₅
- The alternative would be to fine tune again the copper wedges in the series magnet
 - This operation is possible but non trivial since it does not work in differential, but it establishes a new baseline
 - Since the modification is order of the tolerances, it can happen that you get twice the effect or no effect
 - Moreover it should be decided very soon, on the basis of incomplete data
- If the coil size goes back to nominal, the problem disappears

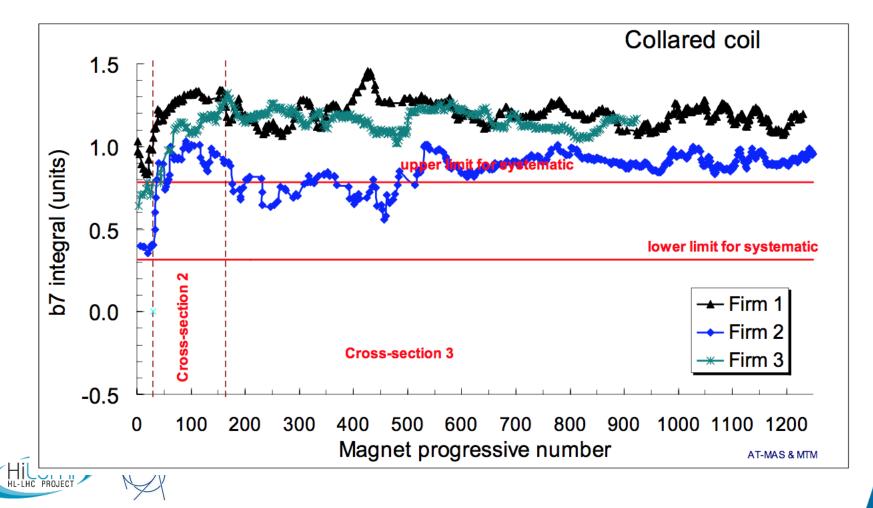

- Last week we asked WP2 (M. Giovannozzi) exploring cases with systematic b₃ at ±3, ±6 units, and with systematic b₅ at ±3, ±6 units to see where dynamic aperture starts being affected
- A further possibility could also be to use the b₅ corrector in the corrector package to correct the b₅ of D2
- 6 units of b_5 in D2 are equivalent to 1 unit of b_5 in the triplet
 - D2 integrated force is about 35 T m
 - Triplet integrated force is 132 T/m * 30 m * 0.050 = 200 T m


- The room temperature measurement of the single aperture should give an indication on b₃ and b₅
 - We are analysing the previous data to understand if the indications are with enough precision
- We have to order the wedges for the series in February/March, otherwise we will be late for the winding of the first series magnet
 - The results of simulations (especially the sensitivity on b₅) are relevant to launch the production
- To show all difficulties of matching b₃, b₅ and b₇ witihin few units I recall the LHC experience
 - You will judge yourself on our challenges, and on the possiblity of steering over a production of 6 dipoles only ...
 - Do not get discouraged


- First intervention (after 8 dipoles, active after 35 dipoles)
 - Change of wedges to have $\Delta b_3 = -3$, $\Delta b_5 = -1.2$
 - It worked for b₃, but we had a trend in the first 20 coils (unexplained)

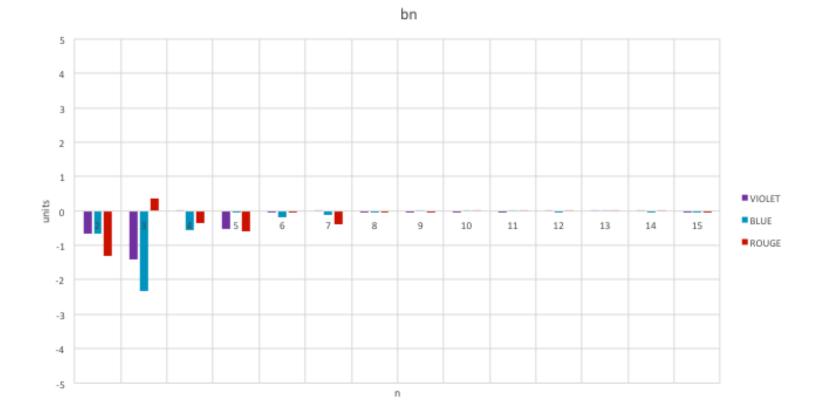

- First intervention (after 8 dipoles, active after 35 dipoles)
 - Change of wedges to have $\Delta b_3 = -3$, $\Delta b_5 = -1.2$
 - For b_5 , we got 2/3 of the expected shift (we reduced b_5 by 0.8 units)


- First intervention (after 8 dipoles, active after 35 dipoles)
 - Change of wedges to have $\Delta b_3 = -3$, $\Delta b_5 = -1$
 - b7 was expected not to change, but it jumped up 0.5 units

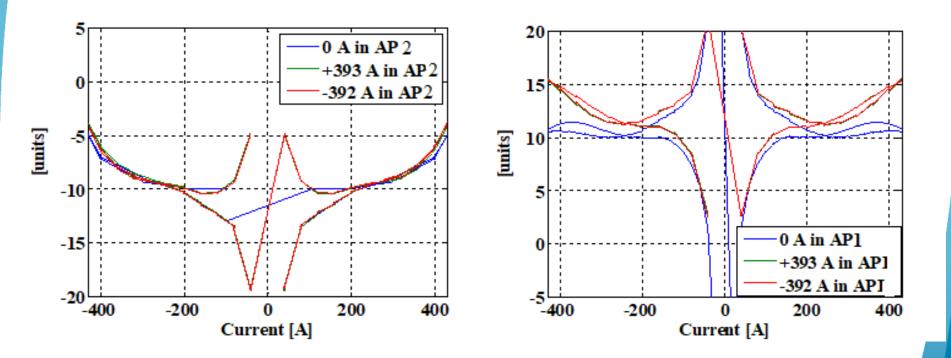

- Second intervention (after 154 dipoles)
 - Increase of midplane shim of 0.125 mm to have $\Delta b3=-3$, $\Delta b5=-1.0$, $\Delta b7=-0.3$,
 - Worked for b₃, but note the trends along the production ...

- Second intervention (after 154 dipoles)
 - Increase of midplane shim of 0.125 mm to have $\Delta b3=-3$, $\Delta b5=-1.0$, $\Delta b7=-0.3$
 - It worked for 2 Firms out of 3 ...

- Second intervention (after 154 dipoles)
 - Increase of midplane shim of 0.125 mm to have $\Delta b3=-3$, $\Delta b5=-1.0$, $\Delta b7=-0.3$
 - Not clear if it worked, but at least it did not got worse



- D2 status
- D2 corrector news



Three apertures made at CERN measured without yoke had
b₃ within 2.5 units

- All apertures with yoke had b_3/a_3 of -/+10 units
 - Saturation is pushing b₃ towards -5 units, but a₃ towards 15 units

- Analysis by A. Musso showed that the source of these multipoles is at the edge of the yoke
 - Suggestion of chaning the material of the yoke keys
- The blue aperture was assembled with stainless steel keys and measured
 - b₃ is smaller than 5 units (but the change from coil to yoked coil is order of 5 units)
 - It is a first indication that with SS keys the b_3/a_3 could stay within the 10 units acceptance range

	no irc	on	iron non	mag keys	iron hybrid keys		
n	bn	an	bn	an	bn	an	
2	-0.61	-1.92	1.45	0.25	-0.90	-0.49	
3	-2.47	-0.10	2.82	-0.22	-9.26	-0.21	
4	-0.64	0.16	-0.39	0.47	0.22	0.00	
5	-0.01	-0.36	-1.21	-0.23	2.73	-0.21	
6	-0.20	0.24	-0.13	0.12	0.05	-0.04	
CERN 7	-0.12	-0.09	0.13	-0.06	-0.84	-0.10	

Decisions:

- We are going to give instruction to the Chinese collaboration to be ready to assemble the magnet with SS keys
- The MCBRDP3 will be assembled with SS keys
- We do not plan to reassemble MCBRDP1 and MCBRDP2 to remove the 15 units of a₃ that are present in case of combined powering (at full field in both apertures)
 - This operation is complex and risky if not planned before (J. C. Perez)
- We will decide which one of the three prototypes P1, P2 or P3 will be included in the prototype cold mass of D2

SUMMARY

D2 prototype

- Short model had b3 b5 within 20 units
- With the prototype we target being within 10 units, and possibly within 5 units
- The sensitivity on b5 is problematic, so if we are out it could be impossible to change without a wedge change
 - ... and I showed you how risky is such intervention
- We ask to have simulations to have a more clear line for the relevance of b5
- D2 corrector
 - The source of the 10 units of b3/a3 has been touched by changing the material of the keys
 - We will see on the coming magnets the impact at 1.9 K

