

GBAR status report 2020

Principle

- $\overline{H}^+ = \overline{p} e^+ e^+$
- Sympathetic cooling with Be+ \rightarrow 10 μ K
- Photodetachment of e⁺
- Time of flight (h = 10 cm $\rightarrow \Delta t$ = 0.14 s)

Beam production

- instead of 3-body process with 2 e⁺
- use Ps = e⁺e⁻, twice
- excite Ps (n=3)

3

B

CERN-SPSC-19 Jan 2021

Positron flux

- 9 MeV, 300 mA, 2.5µs, 1-300 Hz
- 3.4 × 10⁵ e⁺ / pulse @10Hz

→ factor 2 drop @300 Hz

- Reached $5 \times 10^7 e^+ / s$ (300 Hz)
- Worked @200 Hz in 2020
- Final commissioning 2021
- Plans to improve moderation
- Goal $3 \times 10^8 \text{ e}^+/\text{ s}$

M. Charlton et al., NIM, A 985 (2021) 164657

Positron traps

With linac at 200 Hz \rightarrow 1 x 10⁹ e⁺ in 1100 s Goal: accumulate 3 x 10¹⁰ e⁺ in 110 s Present total efficiency 3%

Replacement of BGT 1st stage by SiC re-moderator

- Uses pulsed time structure of primary positron beam
- Potentially one order of magnitude gain wrt present efficiency
- Requires bunching 2.5 µs to 700 ns
- Re-moderator efficiency: 60-70 %
- Feasibility studies will be performed at the beginning of 2021
- Challenge: exit from the trap (requires fast removal of the remoderator)

High quality SiC wafer on a sample holder

A.M.M Leite et al., Journal of Physics: Conf. Series 791, 012005 (2017)

CERN-SPSC-19 Jan 2021

Focusing beams to target

First ortho-positronium signal at GBAR@CERN

2.5

3.0

Time (µs)

ELENA H⁻ beam steering and deceleration

 $\begin{array}{l} \underline{H^{-} \ beam \ from \ ELENA} \\ \hline Emittances \ without \ e- \ cooling \\ \hline \varepsilon_{H^{\sim}} \quad 4 \ mm \times mrad \\ \hline \varepsilon_{V^{\sim}} 1.5 \ mm \times mrad \\ expected \ with \ cooling \ for \ \overline{p} \ 1 \ mm \times mrad \end{array}$

Requirements for drift tube deceleration: -centering → knob provided by AD/ELENA team -bunch length (σ) 75 ns → 45 ns with bunch rotation -time jitter 20 ns must be improved

decelerated to 8 keV in MCP2

decelerated beam spot in MCP2 Displacement due to charge up

Sparks in drift tube to be reduced

P. Pérez

Antiproton trap (Korean groups)

Superconducting magnet 3 to 7 T (LHe/LN2) Cold electrode system (cryoheads)

Being tested with electrons before insertion in final position

Hydrogen beam

 $p + C (10 \text{ nm}) \rightarrow H @6 \text{ keV} 80\%$ efficiency

Study with high statistics $H + Ps \rightarrow H^- + e^+$

<u>Also</u>:

10% of H in 2S state → study of Lambshift measurement systematics

M. Gonin et al. Rev. Sci. Instr. 65, 648 (1994)

Cooling of ions at MAINZ (JGUM group)

Polarisation Gradient Cooling \rightarrow all crystal modes cooled at once Raman Side Band Cooling \rightarrow sequence of 200 laser pulses needed

Demonstration of sub-Doppler temperatures of all vibrational modes by PGC \rightarrow applied to Ca⁺ as model for Be⁺

S. Ejtemaee and P. C. Haljan, Phys. Rev. Lett. 119, 043001 (2017); M. K. Joshi et al, New J. Phys. 22, 103013 (2020)

Injection of ions into cold Coulomb crystal at PARIS (LKB group)

Design free fall chamber

Tracker chambers

 $\delta E = 30 \ \mu eV$ Photo detachment Pulse 500 μs

Ground state of the ion trap : ~ 0.44 m/s for f =1 MHz Photon recoil : fixed value ~ 0.24 m/s Photoelectron recoil : $\sqrt{0.323 \, \delta E / \mu eV}$ m/s Polarisation \rightarrow favoured direction \rightarrow separate free fall zone from obstacles Shadows due to electrodes, obstacles...

Plans

- Measure H/H⁻ production rates using protons \rightarrow optimise processes
- Measure Lamb shift on hydrogen
- Install (anti)proton trap
- Switch to antiprotons
- Example without \bar{p} trapping:
- 6 keV, $10^6 \,\overline{p}$, 2 x $10^8 \,\mathrm{e}^+$, $\sigma = 10^{16} \,\mathrm{cm}^2 \rightarrow 2 \,\overline{\mathrm{H}}$ per pulse
- In 2022, increase in e⁺ trapping efficiency, use \bar{p} trap + Ps excitation \rightarrow 10³ \bar{H} per pulse \rightarrow Lambshift 100 kHz

GBAR collaboration

B. Argence¹, P. Blumer², M. Charlton³, J. Choi⁴, M. Chung⁵, P. Cladé¹, P. Comini⁶, P. Crivelli², P-P. Crépin¹, O. Dalkarov⁷, P. Debu⁶, L. Dodd³, A. Douillet^{1,8}, P. Froelich⁹, J. Gafriller¹⁰, N. Garoum¹¹, S. Guellati¹, J. Heinrich¹, P-A. Hervieux¹², L. Hilico^{1,8}, P. Indelicato¹, G. Janka², S. Jonsell⁹, J-P. Karr^{1,8}, B. Kim⁴, S. Kim⁴, E-S. Kim¹³, A. Kleyheeg¹⁰, Y. Ko¹⁴, T. Kosinski¹⁵, N. Kuroda¹⁶, B. Latacz⁶, H. Lee⁴, J. Lee¹⁴, A. Leite⁶, E. Lim¹³, L. Liszkay⁶, T. Louvradoux¹, D. Lunney¹⁷, K. Lévêque¹², G. Manfredi¹², B. Mansoulié⁶, M. Matusiak¹⁵, G. Mornacchi¹⁰, V. Nesvizhevsky¹⁸, F. Nez¹, S. Niang⁶, R. Nishi¹⁶, S. Nourbaksh¹⁰, B. Ohayon², K. Park⁴, N. Paul¹, P. Pérez⁶, B. Radics², C. Regenfus², S. Reynaud¹, C. Roumegou¹⁷, O. Rousselle¹, J-Y. Roussé⁶, A. Rubbia², J. Rzadkiewicz¹⁵, Y. Sacquin⁶, F. Schmidt-Kaler¹⁹, M. Staszczak¹⁵, T. Takumi¹⁶, B. Tuchming⁶, B. Vallage⁶, D.P. Van der Werf³, A. Voronin⁷, A. Welker¹⁰, S. Wolf¹⁹, D. Won⁴, S. Wronka¹⁵, Y. Yamazaki²⁰, K-H. Yoo⁵