

Scale factors and calibration tools in CMS [for nanoAOD]

Maria D'Alfonso (MIT) & Loukas Gouskos (CERN) for the Cross POG group^(*)

HSF Data analysis WG January 19, 2021

(*) Physics Office for the coordination of activities related to development, maintenance and use of analysis data-formats

Overview of the CMS data-tiers

RAW (~1MB/ev)	 Full event information directly from T0 containing "raw" detector info Not used for analysis
RECO (~2-3MB/ev)	 RECOnstructed data; contains physics objects with many details stored Mainly for low-level developments
AOD (~500kb/ev)	 Analysis Object Data: a subset of RECO. Used for physics analyses in Run 1 Run2: Searches w/ non-std signatures
mini-AOD (~50kb/ev)	 Default data-tier for the Run 2 analyses Covers ~95% of CMS analyses
nano-AOD (~1-5kb/ev)	 New (i.e., ~2017) development Used in a handful of Run 2 analyses Target: cover>50% of the CMS analyses

Loukas Gouskos

(CERN)

MiniAOD based analysis workflow

- Based on the CMS Event Data Model (EDM)/ requires CMSSW
 - Rich event content (~50kb/evt)
 - High-level physics objects with all necessary info for object development and calibration
 - Full list of PF candidates; most tracks and generated particles
 - All trigger objects and bits, generator level information: LHE weights, etc..
 - Then: analysis groups develop a framework to process miniAOD and produce flat ROOT trees
- Cons:
 - Duplication of effort & resources
 - multiple sets of ntuples with very similar content
 - code maintainability
 - Stress in computing infrastructure during rush periods
- Clearly, this approach is not sustainable in the long term

- A light-weight O(kb/evt) flat root ntuple read by bare-root
- Content:
 - High-level physics objects and precompute variables/IDs/etc.. [instead of storing the necessary inputs]
 - All trigger bits
 - Subset of GEN particles [hard scatter, leptons, heavy flavour] and a selected set of LHE/GEN weights [lots of effort to improve content]
 - Store all variables with reduce precision
- Drop:
 - PF Candidates and tracks [stored in miniAOD]
 - Detector-level info [calo cells, rechits, etc...]
- Initial goal: cover 30-50% of CMS Physics analyses
 - A more aggressive target [~80-90% of the analyses] seems feasible
 - Some [limited] room for increase in size/evt if adopted by many analyses
 - Huge gain in computing resources

Analysis Tools

- A few frameworks/libraries [e.g., NanoAOD-Tools] that collect tools to assist the analyzers
 - Modular and flexible
 - python-based modules [but C++ implementations also supported for computationally expensive tasks]
 - Multiple modules runs can be run in one go
- In a nutshell:
 - Gen-level corrections: LHE, PDF weights
 - cross sections are stored in db
 - Non-event data: e.g., trigger prescales, LHC info, ..
 - Tools to apply physics object calibrations, evt-level weights, ...
 - event-level corrections/SF; more involved corrections are propagated at the NanoAOD production stage using Global Tags
 - Routines to evaluate systematic uncertainties
 - Tools for skimming and/or pruning of the output content
 - Functions to compute complex variables; shared among analyses
 - Grid submission tools

• Main idea: centrally develop & validate tools common in most analyses HSF Data analysis WG, Jan 19, 2021

CMS

Analysis Tools: Calibrations & SF

- One of the main efforts currently in the group
 - Improve physics object calibration workflow
 - produce needed samples -> run calibration analysis -> Scale Factors
 - sample production takes significant fraction of the whole process
 - Bookkeeping and application of SF
 - Tools in place, yet room for improvement:
 - Unify across different groups, extend functionality
 - More versatile:
 - Simple and decoupled from official CMS software
 - support both C++ and python
 - Profit from new tools and technologies
 - Functions that works for both **row** and **columnar** type implementations
 - Improve analysis preservation

NanoAOD: "custom NanoAOD"

- NanoAOD data-tier has lots of flexibility
 - Develop custom nanoAOD workflows for <u>very</u> specific cases with tailored event content
- NanoAOD workflow for jet calibration:
 - Designed to aid the calibration workflow of jets
 - Sample production [started from heavier data-tiers] results to a very significant fraction of the total calibration procedure
 - Yet: keep evt/size under control: ~5-6 kb/evt on a limited set of samples
 - Derive JEC/JER, SF for taggers/puid/q-g..

Analysis Tools: Calibration tools

- CMS
- Each physics-object group provides the necessary ingredients to propagate the corrections to the analysis
 - Values collected in different data-formats
 - json
 - CSV
 - root files (TH1, TH2, Tformula)
 - databases, Global tags
 - Use a common format across all groups:
 - Develop a JSON format using a centralize schema
 - clear and attractive format
 - easy to navigate and implement
 - self-documenting
 - Developed outside LHC and HEP: lots of support and tools to aid the analyzer
 - JSON files stored in a central area:
 - "write-once" mode in cvmfs [final decision pending]
 - easy access, allows versioning..

Calibration Tools: Common JSON

• Example:

Self-documenting

```
Tag of the conditions "Vxx"
                                      +
"schema_version": 1,
"corrections": [
       "name": "EIDISO_WH_out",
       "description": "An electron scale factor",
       "version": 1,
       "inputs": [
           { "name": "eta", "type": "real" },
           { "name": "pt", "type": "real" },
           { "name": "systematic", "type": "string" }
       ],
       "output": { "name": "weight", "type": "real" },
       "data": {
           "nodetype": "binning"
           "edges": [ -2.5, -2.17, -1.8, -1.57, -1.44, -0.8, 0.0, 0.8, 1.44, 1.57, 1.8, 2.17, 2.5 ],
           "content": [
               {
                   "nodetype": "binning",
                   "edges": [ 25.0, 27.0, 30.0, 32.0, 35.0, 40.0, 50.0, 200.0 ],
                   "content": [
                      {
                          "nodetype": "category",
                          "keys": [ "nominal", "up", "down" ],
                          "content": [ 0.903, 0.954000000000001, 0.852 ]
                      },
                          "nodetype": "category",
                          "keys": [ "nominal", "up", "down" ],
                          "content": [ 0.921, 0.963000000000001, 0.879 ]
                      },
                                                                                         Can be extended to
                          "nodetype": "category",
                                                                                         event-level corrections
                          "keys": [ "nominal", "up", "down" ],
                          "content": [ 0.924, 0.955000000000001, 0.893 ]
                      },
{
                                                                                         – top/W/Z-p<sub>T</sub> reweighting
                          "nodetype": "category",
                                                                                         - ISR jet reweighting ...
                          "keys": [ "nominal", "up", "down" ],
                          "content": [ 0.926, 0.9470000000000001, 0.905 ]
                      },
```

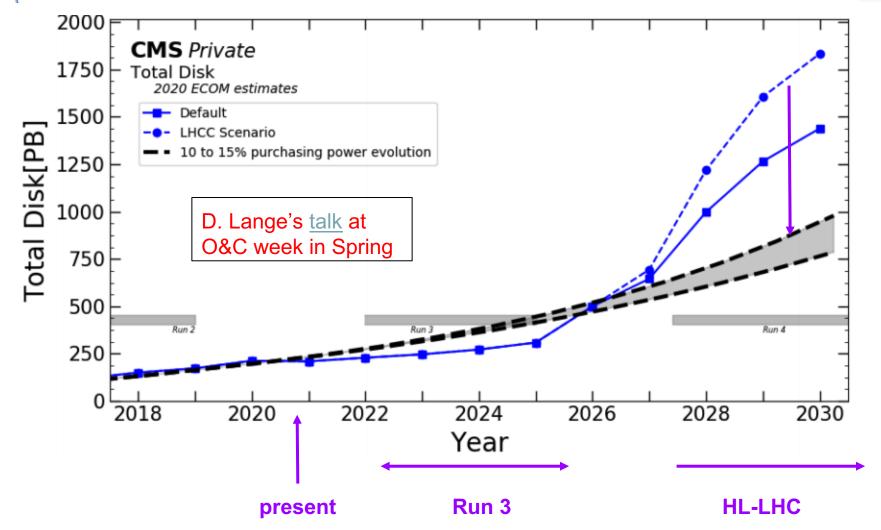
7

‡ Fermilab

Analysis Tools: Application of SF

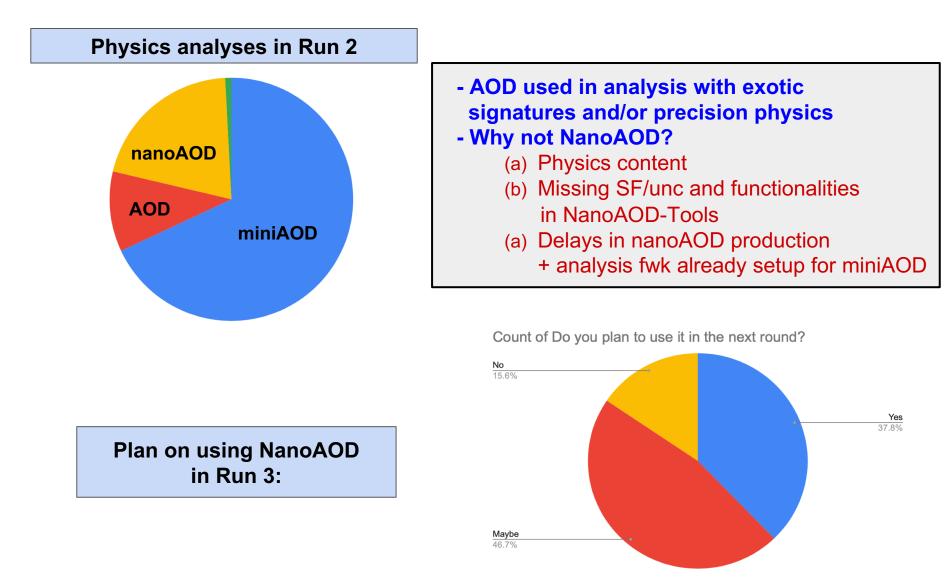
- Based on simple and flexible functions
 - avoid duplication of code/effort
 - centrally maintained
 - less error-prong, broader feedback, share expertise
 - Physics object groups share the same functions
 - Decouple from official CMS software and NanoAOD-Tools
 - Support both C++ and python based analysis codes
 - Traditional (row) and more recent (columnar) analysis frameworks: RootDataFrame, Coffea, ...

CÉRN


- LHC LS 2: period to improve based on the Run 1 & 2 experience
 - Ensure scalability of the CMS analysis format in Run 3 and beyond
 - Streamline operations, avoid duplication of code, share the load
 - More data -> increased complexity [e.g., year-dependent corections...]
 - Improving in these areas -> More time to produce important physics results
- CMS NanoAOD(+ Tools) has great potential
 - One of the main priorities is to improve the physics object calibration workflow and the tools to propagate the corrections
 - Synergies and exchange of experience between experiments very useful

Current and foreseen disk needs

- Current situation not sustainable in the future
 - CMS Physics analyses must move to light-weight data-tiers


CERN

CMS

Data-tiers used in CMS analyses

Using inputs collected ~year ago

