/ﬂ%% U.S. DEPARTMENT OF Office of

#Fermilab <'i*ia\/ﬁENERGY Science

Metadata thoughts
And some coffea tools

Nick Smith
HSF DAWG
17 February 2021

Introduction

2

* Data vs. metadata is really just an optimization detail

import awkward as ak
from coffea.nanoevents import NanoEventsFactory

events = NanoEventsFactory.from root("tests/samples/nano dy.root").events()

df = ak.to pandas(events[["run", "luminosityBlock", "event", "Electron"]])
df.insert (0, "dataset", "DYJetsToLL")
df
dataset run luminosityBlock event (Electron, (Electron, (Electron,
charge) cleanmask) convVeto)
entry subentry
1 0| DYJetsToLL 1 13889 3749762 1 1 True
2 0| DYJetsToLL 1 13889 3749777 1 1 True
1] DYJetsTolLL 1 13889 3749777 -1 1 True
3 0| DYJetsToLL 1 13889 3749768 1 1 True
1| DYJetsTolLL 1 13889 3749768 1 1 True

Feb. 17, 2021 Nick Smith | Metadata discussions

2% Fermilab

Introduction

3

object

attribute

dataset run IluminosityBlock event subent
DYJetsToLL 1 13889 3749762 0
3749777 0

1
3749768 0

Feb. 17, 2021 Nick Smith | Metadata discussions

* Data vs. metadata is really just an optimization detail

Electron

charge cleanmask convVeto

1 1 True
1 1 True
-1 1 True
1 1 True
1 1 True

2% Fermilab

Introduction

 Data tiers are column filters

* Files are row chunks

 Splitting on an index level can sometimes speed up row filtering

* Sub-elements could go into:
* Row indexer via explode (inverse of groupby)
* Column indexer via pivot (unpleasant for irregular list sizes)

datatier NANOAOD AOD
object Electron Electron
attribute charge cleanmask convVeto caloCells
dataset run IluminosityBlock event subentry
DYJetsTolLL 1 13889 3749762 0 1 1 True [{'energy': 1.1}, {'energy': 2.2}]
3749777 0 1 1 True [{'energy': 1.1}, {'energy': 2.2}]
1 -1 1 True [{'energy': 1.1}, {'energy': 2.2}]
3749768 0 1 1 True [{'energy': 1.1}, {'energy': 2.2}]
1 1 1 True [{'energy': 1.1}, {'energy': 2.2}]

4 Feb. 17, 2021 Nick Smith | Metadata discussions

2% Fermilab

Introduction

* We optimize data tiers and row chunks towards:

* Atarget file size ~ area of rectangle

« Why? Traditional filesystems can’t handle many small items? Object store to the
rescue?

* Enough columns to do a reasonable amount of work with
« Re-making the data tiers when we forget a column :(

* Enough rows to have some freedom in redefining filters
« Skimming too tight too early means having to re-do it often

£= Fermilab
5 Feb. 17, 2021 Nick Smith | Metadata discussions

Introduction

* Can we join data tiers at analysis time?
* Some columns may be wide because they contain many sub-elements
* How do we analyze those alongside narrow columns?
* Keep in mind even the row indexer metadata volume is huge

£= Fermilab
6 Feb. 17, 2021 Nick Smith | Metadata discussions

Introduction

* Non-event data (corrections) are interchangeable with columns
* We can either use the function or its result

* The choice is again an optimization detalil
» Complex function, narrow output =» keep output
» Simple function, wide output =» use function

* Keep in mind decompression and bandwidth costs
« Sometimes cheaper to recompute from values on hand

£= Fermilab
7 Feb. 17, 2021 Nick Smith | Metadata discussions

Introduction

8

* Filters are interchangeable with boolean columns
* When do we want to save the function vs. column vs. filtered data tier?

- M4 44 mm-H
- M4 44 mm-

£= Fermilab
Feb. 17, 2021 Nick Smith | Metadata discussions

Requisite advertisement

Coffea is:

* A package in the scientific python ecosystem
* $ pip install coffea

* A user interface for columnar analysis
* With missing pieces of the stack filled in

* A minimum viable product &
‘ Coffea
. We are data analyzers too @
* Areally strong glue .
Visualization K\.j Coffea matpl “tlib %
Algorithms @ SciPy ? Numba K\‘/ Coffea

Array API

AR ROW>>> ﬁ NumPy

Data ingestion

Laurelin ServiceX

Task scheduler

Resource provisioning

9 Feb. 17, 2021 Nick Smith | Metadata discussions

sp"a‘ﬂ([{ DASK 4&Striped @
kubernetes H'I'Condur ------ .slurm etc.
2= Fermilab

Coffea farm goals

* Data delivery is a main bottleneck for coffea at scale

* What could help:

- Shared input cache at column granularity

Derived columns declared, only constructed and cached on access
« Both projections (new columns) and filters (skims)

Unified metadata and dataset schema database
All declared and imported columns accessible /azily
Exportable columns

We want to design a scale-up mechanism
for coffea users that removes the need to
curate skims and re-run expensive
algorithms over and over

2% Fermilab

10 Feb. 17, 2021 Nick Smith | Metadata discussions

Columnservice prototype

« Manage the metadata of individual y
column objects and help clients build “‘
array chunks for processing '

* Originally a k8s service with integrated
dask cluster, now considering more
lightweight solutions

* |deally ship columnservice with
coffea, with e.g. SQLite for local
and Postgres for site installs

» User provides dask cluster, site
provides object store (off the
shelf)

¥

$& Fermilab
11 Feb. 17, 2021 Nick Smith | Metadata discussions

Columnservice case study: avoiding ingestion

* All inputs eventually come from ROOT files
* True for the foreseeable future

* Reading and interpreting files with uproot is expensive
* Even just opening and getting branch names can be significant
* File byte-range caches take time to kick in, bad for small work packages

Coffea NanoEventsProcessor
Open, read Read

branch metadata
’ i array 3-5
build lazy arrays Read first array Read second array y

0 L

2= Fermilab
12 Feb. 17, 2021 Nick Smith | Metadata discussions

Columnservice case study: avoiding ingestion

With columnservice providing metadata, and an object store providing the array
chunk, we start to see things other than read show up in the flame graph

>
©
= S
5 T

o S Awkward ufunc
= (D)

Read column = » Coffea NanoEventsProcessor

metadata, build & 2
@ O
lazy arrays r o0
H——aoqsa0 =0

£= Fermilab
13 Feb. 17, 2021 Nick Smith | Metadata discussions

Persisting non-event data

* We want a service that can decide when to cache function output

* Necessary ingredient: persist-able function definitions
* Bonus: analysis preservation?

Coffea distributed executors all use cloudpickle
* No forward or backward compatibility guarantees for pickled python functions
* Good for getting user code to scale-out mechanisms, bad for persistence

* Correctionlib may be a possible solution
« Store corrections in JSON format with a flexible schema

* Implement evaluator(s)
« High-performance scalar function evaluator provided by library
« High-level types handled by extension libraries

* Join the fun: https://github.com/nsmith-/correctionlib

def f(*args: Union[str,int,float]) -> float:
return ...

double Correction::evaluate(const std::vector<std::variant<int, double, std::string>>& values) const;

£= Fermilab
14 Feb. 17, 2021 Nick Smith | Metadata discussions

https://github.com/nsmith-/correctionlib

Summary

* Its useful to think abstractly in terms of data frames

* Many analysis workflow decisions are optimization problems
* It is not easy in many frameworks to adjust the approach
* It would be nice if optimization choices were made automatically

* Coffea continues to investigate novel approaches to these issues

£= Fermilab
15 Feb. 17, 2021 Nick Smith | Metadata discussions

