

# SUMMATIONS OF LARGE LOGARITHMS BY PARTON SHOWERS

ZOLTÁN NAGY DESY-HH

In collaboration with Dave Soper

#### Perturbative cross sections

The main focus of this workshop is to calculate the pQCD cross sections as precise as possible, thus we have a pretty integral

$$\begin{split} \sigma[O_J] = \sum_m \frac{1}{m!} \sum_{\{a,b,f_1,\dots,f_m\}} \int_0^1 d\eta_{\mathbf{a}} & \overbrace{\int_{\eta_{\mathbf{a}}}^1 \frac{dz}{z} \, \Gamma_{aa'}^{-1}(z,\mu^2) \, f_{a'/A}(\eta_{\mathbf{a}}/z,\mu^2)} \\ & \times \int_0^1 d\eta_{\mathbf{b}} \int_{\eta_{\mathbf{b}}}^1 \frac{d\overline{z}}{\overline{z}} \, \Gamma_{bb'}^{-1}(\overline{z},\mu^2) \, f_{b'/A}(\eta_{\mathbf{b}}/\overline{z},\mu^2) \\ & \times \int d\phi(\eta_{\mathbf{a}}\eta_{\mathbf{b}}s,\{p,f\}_m) \, \langle M(\{p,f\}_m) \big| \, O_J(\{p,f\}_m) \, \Big| M(\{p,f\}_m) \rangle \\ & \times \int d\phi(\eta_{\mathbf{a}}\eta_{\mathbf{b}}s,\{p,f\}_m) \, \langle M(\{p,f\}_m) \big| \, O_J(\{p,f\}_m) \, \Big| M(\{p,f\}_m) \rangle \\ & + \mathcal{O}\left(\frac{\Lambda_{QCD}^2}{\mu_J^2}\right) \end{split}$$

**Error of the factorization** 

(Cannot be beaten by calculating higher and higher order.)

and here the MSbar parton in parton renormalised PDF is

$$\Gamma_{aa'}(z,\mu^2) = \delta(1-z)\delta_{aa'} - \frac{\alpha_s(\mu^2)}{2\pi} \frac{1}{\epsilon} \frac{(4\pi)^{\epsilon}}{\Gamma(1-\epsilon)} P_{aa'}(z) + \cdots .$$

### Statistical space

Introducing the statistical space we can represent the QCD density operator as a vector

#### **Bare PDFs for both incoming hadrons**

$$\sigma[O_J] = \underbrace{\left(1\middle| \ \mathcal{O}_J \ \left[\mathcal{F}(\mu^2)\circ \mathcal{Z}_F(\mu^2)\right] \ \middle| \rho(\mu^2)\right)}_{\text{All the initial and final}} \underbrace{\left| \rho(\mu^2)\right|}_{M} \langle M |$$

state sums and integrals

#### **QCD** density operator

**Number of real radiations** 

Describes the fully exclusive partonic final states.

The physical cross section is RG invariant as well as the QCD density operator and the bare PDF.

$$\mu^2 \frac{d}{d\mu^2} \left| \rho(\mu^2) \right) = \mu^2 \frac{d}{d\mu^2} \left[ \mathcal{F}(\mu^2) \circ \mathcal{Z}_F(\mu^2) \right] = 0 + \mathcal{O}(\alpha_s^{k+1})$$

Perturbative expansion of the density operator

$$\left|\rho(\mu^2)\right) = \sum_{n=0}^k \left[\frac{\alpha_{\rm S}(\mu^2)}{2\pi}\right]^n \sum_{n_{\rm R}=0}^n \sum_{n_{\rm V}=0}^n \left|\rho^{(n_{\rm R},n_{\rm V})}(\mu^2)\right)$$
 Number of loops

### Statistical space

JHEP 09 (2007) 114

A vector in the statistical space can be translated as

$$\left(\{p, f, c, s, c', s'\}_m \middle| \rho\right) \Longleftrightarrow \left\langle \{c, s\}_m \middle| M(\{p, f\}_m)\right\rangle \left\langle M(\{p, f\}_m) \middle| \{c', s'\}_m\right\rangle$$

An operator in the statistical space corresponds to a direct products of the corresponding quantum operators:

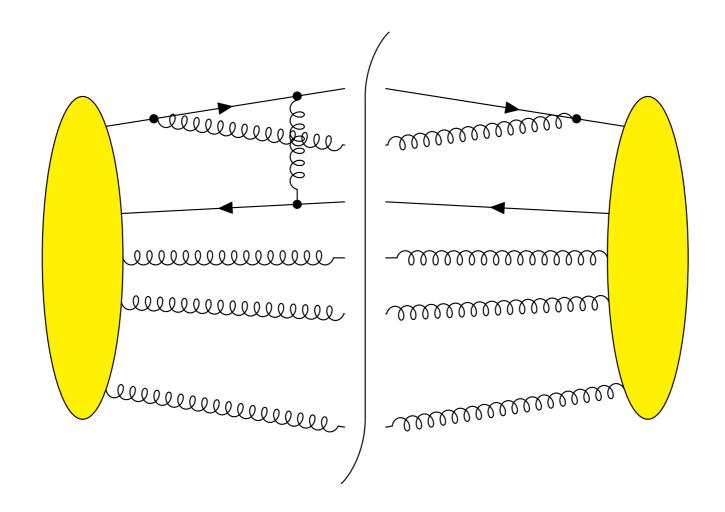
$$\mathcal{A}(\mu^2) \Longleftrightarrow A^L(\mu^2) \otimes A^R(\mu^2)^{\dagger}$$

When operators act on a state we have

$$\cdots \mathcal{A}_{3}(\mu_{3}^{2})\mathcal{A}_{2}(\mu_{2}^{2})\mathcal{A}_{1}(\mu_{1}^{2})|\rho\rangle \iff \cdots \mathcal{A}_{3}^{L}(\mu_{3}^{2})\mathcal{A}_{2}^{L}(\mu_{2}^{2})\mathcal{A}_{1}^{L}(\mu_{1}^{2})|M\rangle\langle M|\mathcal{A}_{1}^{R}(\mu_{1}^{2})^{\dagger}\mathcal{A}_{2}^{R}(\mu_{2}^{2})^{\dagger}\mathcal{A}_{3}^{R}(\mu_{3}^{2})^{\dagger}\cdots$$

### Fixed order cross sections

Amplitudes have soft or collinear singularities and they have divergences  $1/\varepsilon$  from the loops



- We want to describe the singularity structure in a **process independent way**.
- Everything in the yellow blobs is considered hard.

ell & ellelelele

1000000000

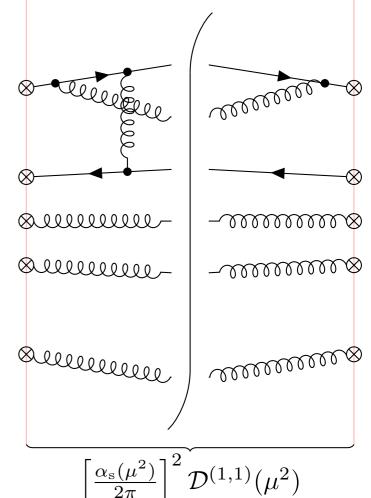
Consider the momenta coming from the hard part as fixed and on shell.

This gives us an operator as

$$\frac{\left(\{\hat{p},\hat{f},\hat{s},\hat{s}',\hat{c},\hat{c}'\}_{m+n_{\mathbb{R}}}\middle|\rho(\mu^{2})\right)}{\left[\frac{\alpha_{s}(\mu^{2})}{2\pi}\right]^{2}\mathcal{D}^{(1,1)}(\mu^{2})} \sim \frac{1}{m!} \int [d\{p\}_{m}] \sum_{\{f\}_{m}} \sum_{\{s,s',c,c'\}_{m}} \times \left(\{\hat{p},\hat{f},\hat{s},\hat{s}',\hat{c},\hat{c}'\}_{m+n_{\mathbb{R}}}\middle|\mathcal{D}(\mu^{2})\middle|\{p,f,s,s',c,c'\}_{m}\right) \times \left(\{p,f,s,s',c,c'\}_{m}\middle|\rho_{\mathrm{hard}}(\mu^{2})\right)$$

We can consider a more constructive approach to build the full infrared sensitive operator. This operator basically represents the QCD density operator of a  $m \rightarrow X$  (anything) process.

$$\mathcal{D}(\mu^{2}) = 1 + \sum_{n=1}^{k} \left[ \frac{\alpha_{s}(\mu^{2})}{2\pi} \right]^{n} \sum_{\substack{n_{R}=0 \ n_{V}=0}}^{n} \sum_{\substack{n_{V}=0 \ n_{R}+n_{V}=n}}^{n} \mathcal{D}^{(n_{R},n_{V})}(\mu^{2})$$



The structure is rather straightforward:

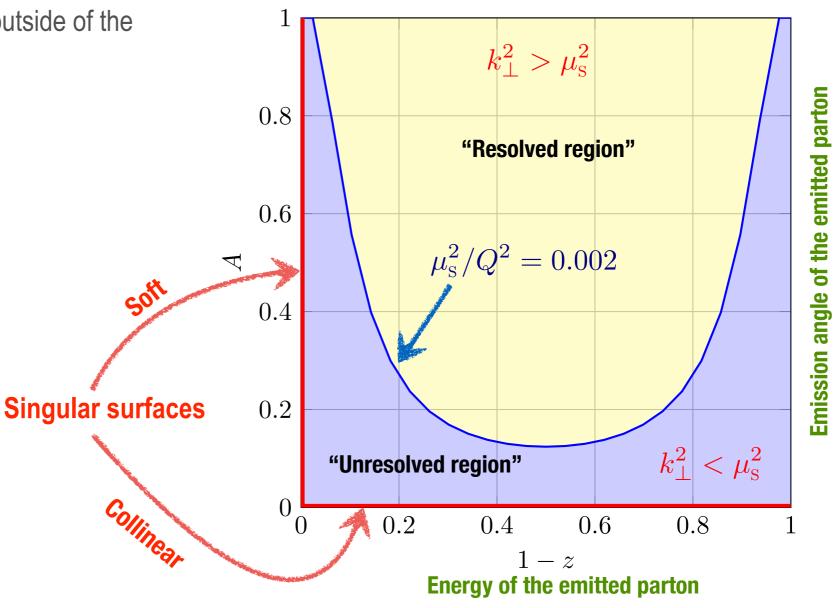
$$\begin{split} & \big(\{\hat{p},\hat{f},\hat{s}',\hat{c}',\hat{s},\hat{c}\}_{m+n_{\mathrm{R}}}\big|\mathcal{D}^{(n_{\mathrm{R}},n_{\mathrm{V}})}(\mu^{2},\boldsymbol{\mu}_{\mathrm{S}}^{2})\big|\{p,f,s',c',s,c\}_{m}\big) \\ &= \sum_{G\in\mathrm{Graphs}} \int d^{d}\{\ell\}_{n_{\mathrm{V}}} \int_{D} & \big\langle\{\hat{s},\hat{c}\}_{m+n_{\mathrm{R}}}\big|\boldsymbol{V}_{L}(G;\{\hat{p},\hat{f}\}_{m+n_{\mathrm{R}}},\{\ell\}_{n_{\mathrm{V}}},\mu^{2})\big|\{s,c\}_{m}\big\rangle \\ & \qquad \qquad \times & \big\langle\{s,c\}_{m}\big|\boldsymbol{V}_{R}^{\dagger}(G;\{\hat{p},\hat{f}\}_{m+n_{\mathrm{R}}},\{\ell\}_{n_{\mathrm{V}}},\mu^{2})\big|\{\hat{s},\hat{c}\}_{m+n_{\mathrm{R}}}\big\rangle_{D} \\ & \qquad \qquad \times & \sum_{I\in\mathrm{Regions}(G)} & \big(\{\hat{p},\hat{f}\}_{m+n_{\mathrm{R}}}\big|\mathcal{P}_{G}(I)\big|\{p,f\}_{m}\big)\underbrace{\Theta_{G}(I;\{\hat{p},\hat{f}\}_{m+n_{\mathrm{R}}},\{\ell\}_{n_{\mathrm{V}}};\boldsymbol{\mu}_{\mathrm{S}}^{2}\big)}_{\textbf{Constrains the off-shellness of the hard partons} \end{split}$$

We have to introduce an **ultraviolet cutoff to capture only the IR part** of the amplitudes. At first order level in the real graphs it is just a cut on an infrared sensitive variable of the splitting:

$$\Theta_G(I; \{\hat{p}, \hat{f}\}_{m+n_R}, \{\ell\}_{n_V}; \mu_S^2) \sim \theta(k_\perp^2 < \mu_S^2)$$

The singular surfaces may not extend outside of the unresolved region.

There can be **no naked singularity**!



Resolved and unresolved regions for  $\mathcal{D}^{(1,0)}(\mu^2)$ 

#### NkLO calculations

**Subtractions** 

Singularities cancel each other here  $\sigma[O_J] = \underbrace{\left(1 \middle| \mathcal{O}_J \left[\mathcal{F}(\mu^2) \circ \mathcal{Z}_F(\mu^2)\right] \mathcal{D}(\mu^2)}_{=|\rho_{\mathrm{H}}(\mu^2))} \underbrace{\mathcal{D}^{-1}(\mu^2) \middle| \rho(\mu^2)\right)}_{=|\rho_{\mathrm{H}}(\mu^2))}$ 

$$+ \mathcal{O}(\alpha_{\rm s}^{k+1} L^{2k+2}) + \mathcal{O}(\Lambda_{QCD}^2/\mu_J^2)$$

Hard part, finite in d=4 dimension

Usually  $\mathcal{D}^{-1}(\mu^2)$  is constructed by hand and  $\mathcal{D}(\mu^2)$  is its inverse.

This is a good approximation as long as

$$\mu^2 < \mu_J^2$$

the D operator doesn't create resolvable partons, thus

$$\mathcal{D}(\mu^2)\mathcal{O}_J \approx \mathcal{O}_J \mathcal{D}(\mu^2)$$

otherwise we have to deal with large logarithms,

$$L = \log \frac{\mu^2}{\mu_J^2}$$

$$\mathcal{D}^{-1}(\mu_{\mathrm{R}}^{2}) \big| \rho(\mu_{\mathrm{R}}^{2}) \big) = \overbrace{\big| \rho^{(0)}(\mu_{\mathrm{R}}^{2}) \big)}^{\mathrm{NL0 \; contributions}} + \frac{\alpha_{\mathrm{s}}(\mu_{\mathrm{R}}^{2})}{2\pi} \overbrace{\big[ \big| \rho^{(1)}(\mu_{\mathrm{R}}^{2}) \big) - \mathcal{D}^{(1)}(\mu_{\mathrm{R}}^{2}) \big| \rho^{(0)}(\mu_{\mathrm{R}}^{2}) \big]}^{\mathrm{NL0 \; contributions}} + \Big[ \frac{\alpha_{\mathrm{s}}(\mu_{\mathrm{R}}^{2})}{2\pi} \Big]^{2} \underbrace{\Big\{ \big| \rho^{(2)}(\mu_{\mathrm{R}}^{2}) \big) - \mathcal{D}^{(1)}(\mu_{\mathrm{R}}^{2}) \big| \rho^{(1)}(\mu_{\mathrm{R}}^{2}) \big) - \big[ \mathcal{D}^{(2)}(\mu_{\mathrm{R}}^{2}) - \mathcal{D}^{(1)}(\mu_{\mathrm{R}}^{2}) \mathcal{D}^{(1)}(\mu_{\mathrm{R}}^{2}) \big] \big| \rho^{(0)}(\mu_{\mathrm{R}}^{2}) \big)}^{\mathrm{NNL0 \; contributions}}$$

#### NkLO calculations

We define an operator that is **finite** and **doesn't** change the number of patrons and their momenta and flavours in such way that

$$(1|\mathcal{V}(\mu^2)) = (1|\mathcal{F}(\mu^2) \circ \mathcal{Z}_F(\mu^2)]\mathcal{D}(\mu^2)\mathcal{F}^{-1}(\mu^2)$$

- IR **finite** operator
- doesn't create new patrons
- doesn't change momenta or flavours
- its definition is ambiguous

- IR **singular** operator
- does create new patrons
- does change momenta and flavours

With the help of this we can define a normalised IR singular operator as

$$\mathcal{X}_1(\mu^2) = \left[ \mathcal{F}(\mu^2) \circ \mathcal{Z}_F(\mu^2) \right] \mathcal{D}(\mu^2) \mathcal{F}^{-1}(\mu^2) \mathcal{V}^{-1}(\mu^2) \qquad \qquad \downarrow \qquad \left( 1 \middle| \mathcal{X}_1(\mu^2) = \left( 1 \middle| \mathcal{X}_1(\mu^2) \right) \right) \mathcal{D}(\mu^2) \mathcal{F}^{-1}(\mu^2) \mathcal{D}(\mu^2) \mathcal{F}^{-1}(\mu^2) \qquad \qquad \downarrow \qquad \qquad \downarrow$$

The cross section can be written as

$$\sigma[O_J] = \left(1 \middle| \mathcal{O}_J \mathcal{X}_1(\mu^2) \mathcal{V}(\mu^2) \mathcal{F}(\mu^2) \middle| \rho_{\mathrm{H}}(\mu^2) \right)$$

when we don't have to worry about large logs, these operators **commute** 

#### Useful notations

It is proven to be useful to generalise the procedure of defining operator  $\mathcal{V}(\mu^2)$  from  $\mathcal{D}(\mu^2)$ .

Let  $\mathscr{A}$  be a linear operator in the statistical space (may or mayn't change the number of partons):

$$\mathcal{A}\big|\{p,f,c,c',s,s'\}_m\big) = \int d\{\hat{\boldsymbol{p}},\hat{\boldsymbol{f}},\hat{c},\hat{c}',\hat{s},\hat{s}'\}_{\hat{\boldsymbol{m}}} \, \big|\{\hat{\boldsymbol{p}},\hat{\boldsymbol{f}},\hat{c},\hat{c}',\hat{s},\hat{s}'\}_{\hat{\boldsymbol{m}}}\big) \, \big(\{\hat{\boldsymbol{p}},\hat{\boldsymbol{f}},\hat{c},\hat{c}',\hat{s},\hat{s}'\}_{\hat{\boldsymbol{m}}} \, \big|\mathcal{A}\big|\{p,f,c,c',s,s'\}_m\big)$$

We define a mapping,  $[\cdot]_{\mathbb{P}}:\mathcal{A}\longrightarrow\mathcal{B}=[\mathcal{A}]_{\mathbb{P}}$  , in such a way that

$$\mathcal{B}|\{p, f, c, c', s, s'\}_m\} = \int d\{\hat{c}, \hat{c}', \hat{s}, \hat{s}'\}_m |\{p, f, \hat{c}, \hat{c}', \hat{s}, \hat{s}'\}_m\} (\{p, f, \hat{c}, \hat{c}', \hat{s}, \hat{s}'\}_m |\mathcal{B}|\{p, f, c, c', s, s'\}_m\}$$

and

$$(1|[\mathcal{A}]_{\mathbb{P}} = (1|\mathcal{A}$$

The combination  $\mathcal{A}-\left[\mathcal{A}\right]_{\mathbb{P}}$  appears frequently, thus it is useful to define:  $\left[\mathcal{A}\right]_{1-\mathbb{P}}=\mathcal{A}-\left[\mathcal{A}\right]_{\mathbb{P}}$ .

$$\mathcal{V}(\mu_{\mathrm{R}}^{2}) = \left[ \left[ \mathcal{F}(\mu_{\mathrm{R}}^{2}) \circ \mathcal{Z}_{F}(\mu_{\mathrm{R}}^{2}) \right] \mathcal{D}(\mu_{\mathrm{R}}^{2}) \right]_{\mathbb{P}} \mathcal{F}^{-1}(\mu_{\mathrm{R}}^{2})$$

#### Fixed order cross sections

#### Parton showers

(in only two slides)

#### Shower Cross Section

The fixed order cross section is fine as long as we can calculate at "all order level". But life is not that easy...

- truncated at NLO, NNLO level
- prefers large scale,  $\mu^2 \approx Q^2$

$$\sigma[O_J] = \left(1 \middle| \mathcal{O}_J \, \mathcal{X}_1(\mu^2) \right) \, \mathcal{V}(\mu^2) \, \overbrace{\mathcal{F}(\mu^2) \middle| \rho_H(\mu^2)}\right)$$

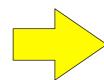
- prefers small scale,  $\mu^2 \ll \mu_J^2$
- that is **in conflict** with the hard part

- -Choose a hard scale,  $\mu_{\rm H}^2 pprox Q^2$
- -Choose a cutoff scale,  $\mu_J^2 \gg \mu_{\rm f}^2 \approx 1 {\rm GeV}^2$
- -Insert a unit operator before the measurement operator as,

$$1 = \mathcal{X}_1(\mu_f^2)\mathcal{X}_1^{-1}(\mu_f^2)$$

$$\sigma[O_{J}] = \underbrace{\left(1\middle|\mathcal{O}_{J}\,\mathcal{X}_{1}(\mu_{\mathrm{f}}^{2})\right)}_{=(1|\mathcal{O}_{J}}\underbrace{\mathcal{X}_{1}^{-1}(\mu_{\mathrm{f}}^{2})\mathcal{X}_{1}(\mu_{\mathrm{H}}^{2})}_{\mathcal{U}(\mu_{\mathrm{H}}^{2})}\mathcal{V}(\mu_{\mathrm{H}}^{2})\mathcal{F}(\mu_{\mathrm{H}}^{2})\middle|\rho_{\mathrm{H}}(\mu_{\mathrm{H}}^{2})\right)}_{=(1|\mathcal{O}_{J})}$$

No resolvable radiation come from  $\mathcal{X}_1(\mu_{\mathrm{f}}^2)$  operator, thus these operators commute,  $\mathcal{O}_J \mathcal{X}_1(\mu_{\mathrm{f}}^2) \approx \mathcal{X}_1(\mu_{\mathrm{f}}^2) \mathcal{O}_J$ 



$$\mathcal{U}(\mu_{\rm f}^2, \mu_{\rm H}^2) = \mathbb{T} \exp \left\{ \int_{\mu_{\rm f}^2}^{\mu_{\rm H}^2} \frac{d\mu^2}{\mu^2} \, \mathcal{S}(\mu^2) \right\}$$
$$\frac{1}{\mu^2} \mathcal{S}(\mu^2) = \lim_{\epsilon \to 0} \mathcal{X}_1^{-1}(\mu^2) \frac{d\mathcal{X}_1(\mu^2)}{d\mu^2}$$

$$\frac{1}{\mu^2} \mathcal{S}(\mu^2) = \lim_{\epsilon \to 0} \mathcal{X}_1^{-1}(\mu^2) \frac{d\mathcal{X}_1(\mu^2)}{d\mu^2}$$

### First order shower

The generators of the unitary shower can be expanded in the coupling:

$$S(\mu^2) = \frac{\alpha_s(\mu^2)}{2\pi} S^{(1)}(\mu^2) + \left[\frac{\alpha_s(\mu^2)}{2\pi}\right]^2 S^{(2)}(\mu^2) + \cdots$$

and the first order term is rather simple

$$\frac{1}{\mu^{2}} S^{(1)}(\mu^{2}) = \left[ \underbrace{\mathcal{F}(\mu_{R}^{2}) \frac{\partial \mathcal{D}^{(1,0)}(\mu^{2}, \mu_{S}^{2})}{\partial \mu_{S}^{2}} \mathcal{F}^{-1}(\mu^{2})}_{\partial \mu_{S}^{2}} - \underbrace{\frac{\partial \left[\mathcal{F}(\mu_{R}^{2}) \mathcal{D}^{(1,0)}(\mu^{2}, \mu_{S}^{2})\right]_{\mathbb{P}}}{\partial \mu_{S}^{2}} \mathcal{F}^{-1}(\mu^{2})}_{\partial \mu_{S}^{2}} + \underbrace{\operatorname{Im} \frac{\partial \mathcal{D}^{(0,1)}(\mu^{2}, \mu_{S}^{2})}{\partial \mu_{S}^{2}}}_{\mu_{S}^{2} = \mu_{S}^{2}} \right]_{\mu_{S}^{2} = \mu_{S}^{2}}$$

#### **Real operator**

all the quantum numbers of the emitted parton is **resolved** 

#### Integrated real operator

- all the quantum numbers of the emitted parton is **integrated out**
- it is **not** the contribution of the virtual graphs

#### Glauber gluon

imaginary part of the virtual graphs

 $\sim i\pi$ 

Note, the first order kernel is independent of the real part of the virtual graphs.

### Leading Color Approx. (LC)

**Leading Color Approximation** is widely used in parton shower implementations.

No colour interferences are considered. The colour space is diagonal in every step of the shower

$$|\{p, f, \mathbf{c}\}_m\rangle_{\mathrm{LC}} \equiv |\{p, f, \mathbf{c}, \mathbf{c}\}_m\rangle$$

Colour group is **reduced to U(3)**, the colour overlaps at the end of the shower is trivial

$$C_F = \frac{C_A}{2} = \frac{N_c}{2} \qquad \text{and} \qquad \left(1 \middle| \{c, c\}_m\right) = \left\langle \{\mathbf{c}\}_m \middle| \{\mathbf{c}\}_m\right\rangle = 1 + \mathcal{O}(1/N_c^2)$$

- In general the error terms are suppressed by  $1/N_c^2$  but they are **LL contributions**.
- One can tweak the  $C_A/2$ ,  $C_F$  factor to obtain LL and NLL for some observables. (See thrust result, later!)
- We don't see how it can be improved systematically. No clear way to treat the error terms perturbatively.

But DEDUCTOR doesn't use it at all!

### LC+ Approximation

Despite of the name it is **not an approximation of the colour space**, it is an **approximation of the shower evolution operator**.

#### LC+ part

- Diagonal operator in the color space
- Exact in the collinear limit
- Some soft interferences are included but not all
- Easy to exponentiate

$$S^{(1)}(\mu^2) = S_{LC+}^{(1)}(\mu^2) + \Delta S^{(1)}(\mu^2)$$

#### Wide angle soft part

- Only wide angle soft singularities
- Only single log contribution
- Leads to only  $1/N_c^2$  suppressed terms
- Can be treated **perturbatively**

This decomposition preserves unitary,

$$(1|\mathcal{S}^{(1)}(\mu^2)) = (1|\mathcal{S}^{(1)}_{LC+}(\mu^2)) = (1|\Delta\mathcal{S}^{(1)}(\mu^2)) = 0$$

and it allows us to treat the wide angle soft part perturbatively in a very efficient and flexible way.

- No approximation of the colour group, it is the full SU(3) algebra
- Can handle any colour interferences

$$\{c\}_m \neq \{c'\}_m$$

 At the end of the shower we calculate the full SU(3) colour overlap without approximation,

$$\langle \{c'\}_m | \{c\}_m \rangle$$

We have a **very fast algorithm** to do this, and can deal with hundreds of partons.

• No need of tweaking the  $C_A/2$ ,  $C_F$  colour factors.

Fixed order cross sections

Parton showers

## Summing large logarithms with parton showers

### Summing logarithms

I don't trust in eye measure to clam LL or NLL accuracy of any parton shower. One way to check the summation property of the shower is to **gain analytical control** on the shower cross section. Is it *possible* to do it? Is it *simple*?

$$\sigma[O_J] = \left(1 \middle| \mathcal{O}_J \mathbb{T} \exp\left\{ \int_{\mu_{\mathrm{f}}^2}^{\mu_{\mathrm{H}}^2} \frac{d\mu^2}{\mu^2} \, \mathcal{S}(\mu^2) \right\} \mathcal{V}(\mu_{\mathrm{H}}^2) \mathcal{F}(\mu_{\mathrm{H}}^2) \left| \rho_{\mathrm{H}}(\mu_{\mathrm{H}}^2) \right)$$

- "infinite" number of partons
- make measurement on these multi-parton states
- impossible task to study the log structure analytically

We should **reformulate** the shower cross section, in such a way that:

- more suitable for analytical studies
- without extra approximation (all the approximations have been done in the shower operator  $S(\mu^2)$ )
- the effect of the measurement operator should be **exponentiated**

We want to test the log summation property of the parton shower cross algorithms

- study observables that exponentiates (thrust, Drell-Yan pT-distributions,...)
- analytical results are available

### Preparing observables

Consider the Dell-Yan kT distribution:

$$\hat{\mathcal{O}}(\mathbf{k}_{\perp})|\{p, f, ...\}_m\} = (2\pi)^2 \delta^{(2)}(\mathbf{k}_{\perp} - \mathbf{k}_Z(\{p\}_m))|\{p, f, ...\}_m\}$$

This operator is not invertible, but its **Fourier transform** is,

$$\mathcal{O}(\mathbf{b}) | \{p, f, ...\}_m \} = e^{i\mathbf{b} \cdot \mathbf{k}_Z(\{p\}_m)} | \{p, f, ...\}_m \} , \qquad \mathcal{O}^{-1}(\mathbf{b}) | \{p, f, ...\}_m \} = e^{-i\mathbf{b} \cdot \mathbf{k}_Z(\{p\}_m)} | \{p, f, ...\}_m \} .$$

Similarly for thrust, we use Laplace transformation to make the measurement operator invertible,

$$\mathcal{O}(\mathbf{v})\big|\{p,f,...\}_m\big) = e^{-\mathbf{v}\tau(\{p\}_m)}\big|\{p,f,...\}_m\big) , \qquad \mathcal{O}^{-1}(\mathbf{v})\big|\{p,f,...\}_m\big) = e^{\mathbf{v}\tau(\{p\}_m)}\big|\{p,f,...\}_m\big)$$

The formalism can deal with measurement operator that has an inverse, thus we almost **always need** some kind of **proxy** to do the analytical studies of the parton showers. Sometimes it is just a simple integral transformation, sometimes a generating functional. It is a good guideline to follow the footsteps of the analytic calculation.

$$\hat{\mathcal{O}}(v) \Longrightarrow \mathcal{O}(r)$$
 and  $\mathcal{O}(r)$  always has an inverse over the whole statistical space

### Observable dependent shower

We define an operator that is **finite** and **doesn't** change the number of patrons and their momenta and flavours but this time **with observable dependence** 

$$\mathcal{Y}(\mu^{2}; \boldsymbol{r}) = \left[\mathcal{O}(\boldsymbol{r}) \left[ \mathcal{F}(\mu^{2}) \circ \mathcal{Z}_{F}(\mu^{2}) \right] \mathcal{D}(\mu^{2}) \mathcal{O}^{-1}(\boldsymbol{r}) \right]_{\mathbb{P}} \times \left( \left[ \left[ \mathcal{F}(\mu^{2}) \circ \mathcal{Z}_{F}(\mu^{2}) \right] \mathcal{D}(\mu^{2}) \right]_{\mathbb{P}} \right)^{-1}$$

From the definition, it is easy to show that

$$(1|\mathcal{Y}(\mu^2; \mathbf{r})\mathcal{O}(\mathbf{r})) = (1|\mathcal{O}(\mathbf{r})\mathcal{U}(\mu_f^2, \mu^2))$$

- IR finite operator
- doesn't create new patrons
- doesn't change momenta or flavours
- its definition obviously is ambiguous
- normalised

$$\mathcal{O}(\boldsymbol{r}) = 1 \implies \mathcal{Y}(\mu^2; \boldsymbol{r}) = 1$$

measurement after the

and the shower cross section becomes  $\sigma(\boldsymbol{r}) = \left(1 \middle| \mathcal{Y}(\mu_{\mathrm{H}}^2, \boldsymbol{r}) \, \mathcal{O}(\boldsymbol{r}) \, \mathcal{V}(\mu_{\mathrm{H}}^2) \, \mathcal{F}(\mu_{\mathrm{H}}^2) \, \middle| \rho_{\mathrm{H}}(\mu_{\mathrm{H}}^2) \right) = \left(1 \middle| \mathcal{O}(\boldsymbol{r}) \, \mathcal{U}(\mu_{\mathrm{f}}^2, \mu_{\mathrm{H}}^2) \, \mathcal{V}(\mu_{\mathrm{H}}^2) \, \mathcal{F}(\mu_{\mathrm{H}}^2) \, \middle| \rho_{\mathrm{H}}(\mu_{\mathrm{H}}^2) \right)$  measurement on the hard state (only few patrons) It is really an equal sign!

### Observable dependent shower

The  $\mathcal{Y}(\mu^2; r)$  operator can be **exponentiated** in the usual way,

$$\mathcal{Y}(\mu_{\mathrm{H}}^2; \boldsymbol{r}) = \mathbb{T} \mathrm{exp} \left\{ \int_{\mu_{\mathrm{f}}^2}^{\mu_{\mathrm{H}}^2} \frac{d\mu^2}{\mu^2} \mathcal{S}_{\mathcal{Y}}(\mu^2; \boldsymbol{r}) \right\} \quad , \quad \text{ with } \quad \mathcal{Y}(\mu_{\mathrm{f}}^2; \boldsymbol{r}) = 1$$

where

$$\frac{1}{\mu^2} \mathcal{S}_{\mathcal{Y}}(\mu^2; \boldsymbol{r}) = \mathcal{Y}^{-1}(\mu^2; \boldsymbol{r}) \frac{d\mathcal{Y}(\mu^2; \boldsymbol{r})}{d\mu^2} .$$

- Here the exponent has to be an all order expression to maintain the equality with the shower cross section.
- The operator  $\mathcal{S}_{\mathcal{Y}}(\mu^2; \boldsymbol{r})$  contains large logarithms of  $L(\boldsymbol{r})$  .
- We can relate the  $S_{\mathcal{Y}}(\mu^2; r)$  operator to the generator of the parton shower  $S(\mu^2)$  via

$$(1|\mathcal{Y}(\mu^2; \mathbf{r}) \,\mathcal{S}_{\mathcal{Y}}(\mu^2; \mathbf{r}) = (1|\mathcal{Y}(\mu^2; \mathbf{r}) \,\mathcal{O}(\mathbf{r}) \,\mathcal{S}(\mu^2) \,\mathcal{O}^{-1}(\mathbf{r})$$

with the help of the  $\lceil \cdot \rceil_{\mathbb{P}}$  operation we can extract  $\mathcal{S}_{\mathcal{Y}}(\mu^2; \boldsymbol{r})$  as

$$\mathcal{S}_{\mathcal{Y}}(\mu^2; \boldsymbol{r}) = \left[ \mathcal{Y}(\mu^2; \boldsymbol{r}) \, \mathcal{O}(\boldsymbol{r}) \, \mathcal{S}(\mu^2) \, \mathcal{O}^{-1}(\boldsymbol{r}) \right]_{\mathbb{P}} - \left[ \mathcal{Y}(\mu^2; \boldsymbol{r}) - 1 \right] \mathcal{S}_{\mathcal{Y}}(\mu^2; \boldsymbol{r})$$

and this can be solved **recursively** order by order (in powers of the shower generator  $S(\mu^2)$ ).

### Observable dependent shower

We have **two equations and two unknowns**, so we can solve them recursively:

$$S_{\mathcal{Y}}(\mu^2; \nu) = \sum_{k=1}^{\infty} S_{\mathcal{Y}}^{[k]}(\mu^2; \nu)$$
$$\mathcal{Y}(\mu^2; \nu) = 1 + \sum_{k=1}^{\infty} \mathcal{Y}^{[k]}(\mu^2; \nu)$$

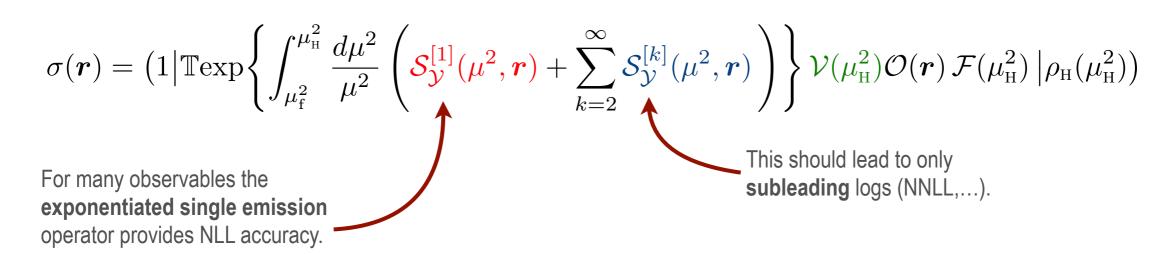
At first order level we have

$$\mathcal{S}_{\mathcal{Y}}^{[1]}(\mu^2; \boldsymbol{r}) = \left[\mathcal{O}(\boldsymbol{r}) \, \mathcal{S}(\mu^2) \, \mathcal{O}^{-1}(\boldsymbol{r})\right]_{\mathbb{P}}$$
 $\mathcal{Y}^{[1]}(\mu^2; \boldsymbol{r}) = \int_{\mu_{\boldsymbol{r}}^2}^{\mu^2} \frac{d\bar{\mu}^2}{\bar{\mu}^2} \left[\mathcal{O}(\boldsymbol{r}) \, \mathcal{S}(\bar{\mu}^2) \, \mathcal{O}^{-1}(\boldsymbol{r})\right]_{\mathbb{P}}$ 

The **second order** generator is a little bit more complicated:

$$\mathcal{S}_{\mathcal{Y}}^{[2]}(\mu^2; \boldsymbol{r}) = \int_{\mu_{\mathrm{f}}^2}^{\mu^2} \frac{d\bar{\mu}^2}{\bar{\mu}^2} \left[ \left[ \mathcal{O}(\boldsymbol{r}) \, \mathcal{S}(\bar{\mu}^2) \, \mathcal{O}^{-1}(\boldsymbol{r}) \right]_{\mathbb{P}} \left[ \mathcal{O}(\boldsymbol{r}) \, \mathcal{S}(\mu^2) \, \mathcal{O}^{-1}(\boldsymbol{r}) \right]_{1-\mathbb{P}} \right]_{\mathbb{P}}$$

Now the shower cross section (in a kind of analytical form) is



### Thrust in e+e- annihilation

In this case the hard process at Born level is very simple, it is proportional to a single basis vector only with a quark-

antiquark pair:

$$\left| \rho_{\mathrm{H}}(\mu_{\mathrm{H}}^2) \right) \propto \left| \{p, f, c, c\}_2 \right)$$

This is always eigenvector of the exponent, thus the exponentiation is trivial:

$$S_{\mathcal{Y}}^{[k]}(\mu^2;\nu) | \{p, f, c, c\}_2\} = \lambda_{\mathcal{Y}}^{[k]}(\mu^2/Q^2;\nu) | \{p, f, c, c\}_2\}$$

With this the cross section is rather simple,

This is the "golden nugget". The parton shower algorithm can agree with the analytic result.

$$\frac{\sigma(\boldsymbol{r})}{\sigma_0} = \exp\left\{\int_0^1 \frac{dx}{x} \left(\lambda_{\mathcal{Y}}^{[1]}(x,\nu) + \sum_{k=2}^{\infty} \lambda_{\mathcal{Y}}^{[k]}(x,\nu)\right)\right\} + \cdots$$

This is the shower generated "junk". This has to be subleading log contribution.

We can study analytically the exponent when it is possible,

$$I^{[k]}(\nu) = \int_0^1 \frac{dx}{x} \lambda_{\mathcal{Y}}^{[k]}(x,\nu)$$

When it is hard to test analytically, we can calculate the exponent numerically and test its large log behaviour in terms of  $\log(\nu)$ .

$$I^{[k]}(\nu) = \sum_{n=k}^{\infty} \left[ \frac{\alpha_{\rm s}(Q^2/\nu)}{2\pi} \right]^n I_n^{[k]}(\nu)$$

For NLL accuracy we should have

$$I_n^{[k]}(\nu) \sim \log^{n-1}(\nu)$$

for every k > 1.

For LL accuracy we should have

$$I_n^{[k]}(\nu) \sim \log^{\mathbf{n}}(\nu)$$

for every k > 1.

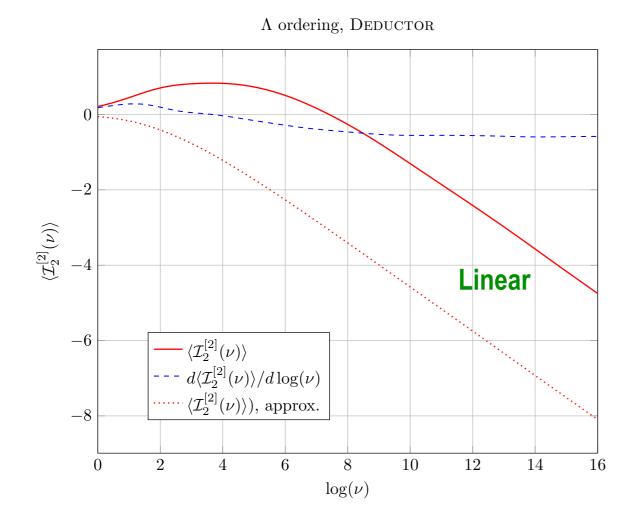
#### DEDUCTOR A-ordered

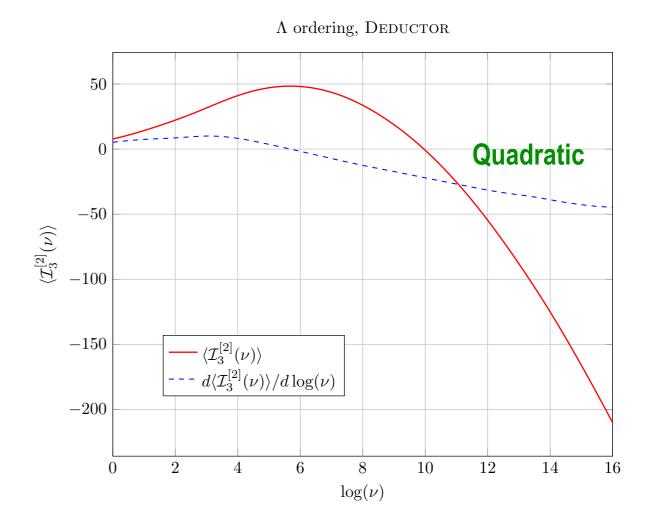
#### **DEDUCTOR** Lambda ordered shower

The ordering variable is the virtuality divided by the mother parton energy

$$\Lambda^2 = \frac{(\hat{p}_l + \hat{p}_{m+1})^2}{2p_l \cdot Q} Q^2$$

- Global momentum mapping
- Proper soft gluon treatment with **full SU(3) colour** evolution at amplitude level
- In this case we can prove analytically that the shower sums up large logarithms at NLL level



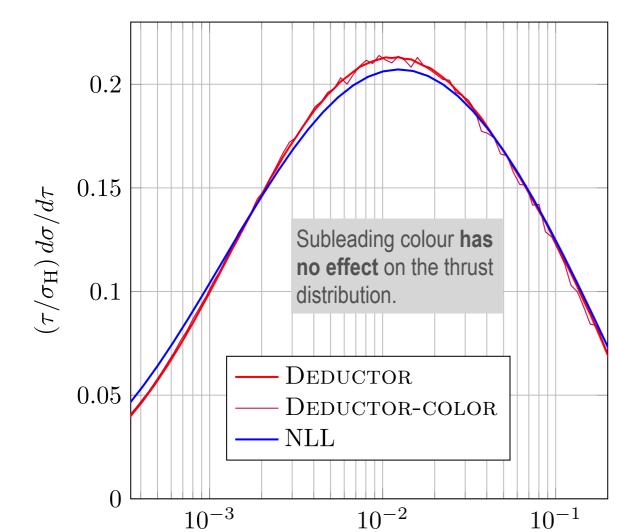


#### DEDUCTOR A-ordered

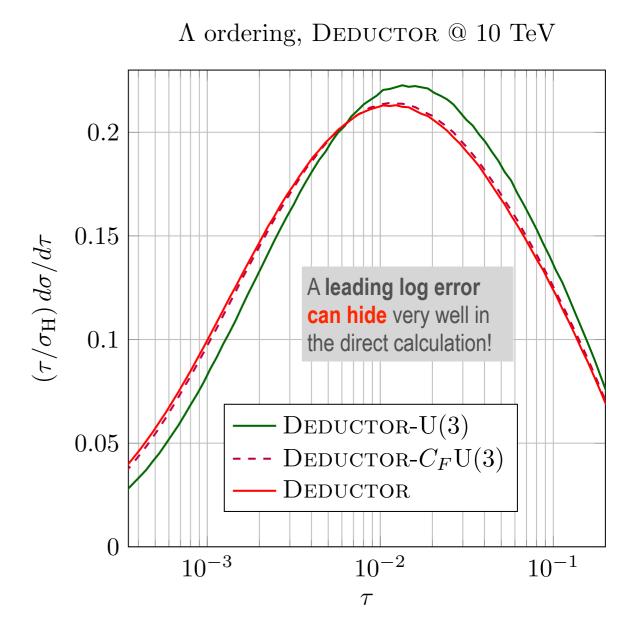
#### **DEDUCTOR** Lambda ordered shower

- Direct shower cross section calculation
- LC+ colour approximation with perturbative subleading colour improvement
- The first step of the shower is always exact in colour in e+e- annihilation.

 $\Lambda$  ordering, Deductor @ 10 TeV



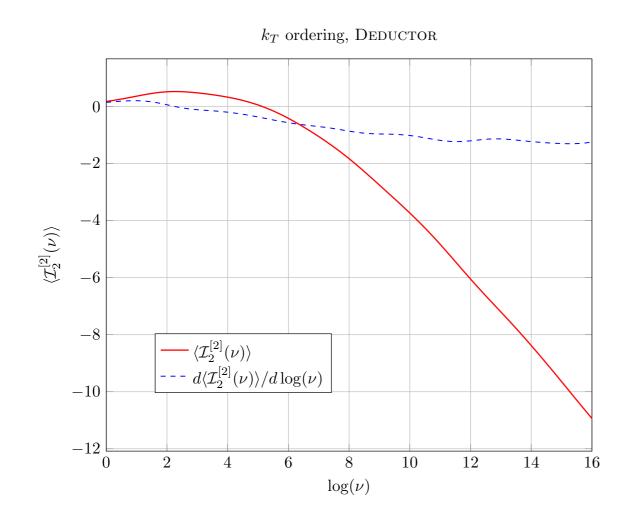
au

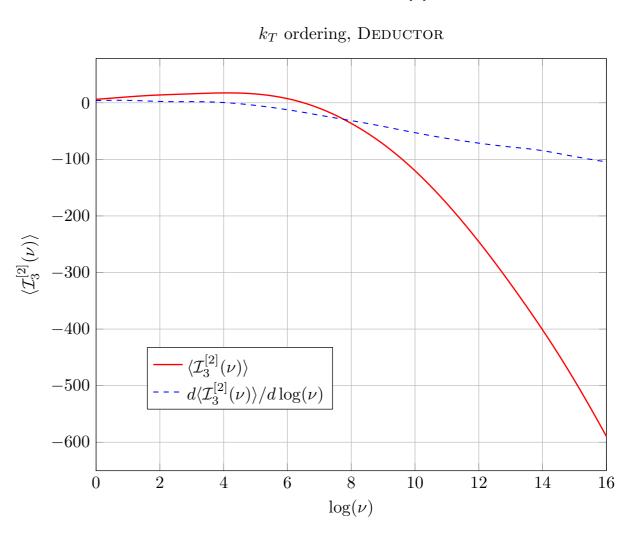


#### DEDUCTOR kT ordered

#### **DEDUCTOR** kT ordered shower

- The ordering variable is the **transverse momentum** of the splitting
- Global momentum mapping
- Proper soft gluon treatment with **full colour** evolution
- In this case we cannot prove analytically that the shower sums up large logarithms at NLL level
- We check numerically the first couple of  $I_n^{[2]}(\nu)$  coefficients.
- It looks OK for k=2 and can be explained by real-virtual cancellation, but hard to see what happens for k > 2.



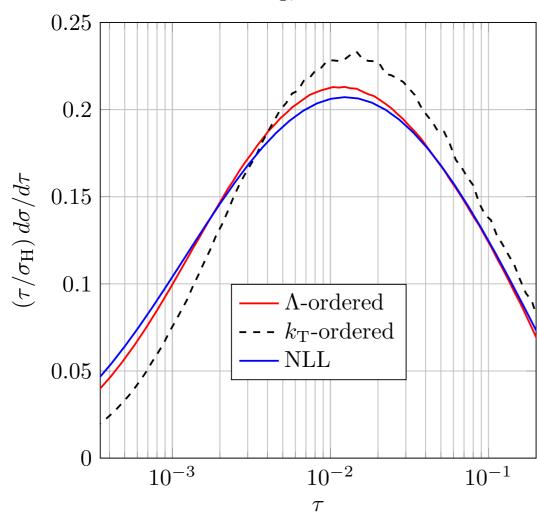


#### DEDUCTOR kT ordered

#### **DEDUCTOR** kT ordered shower

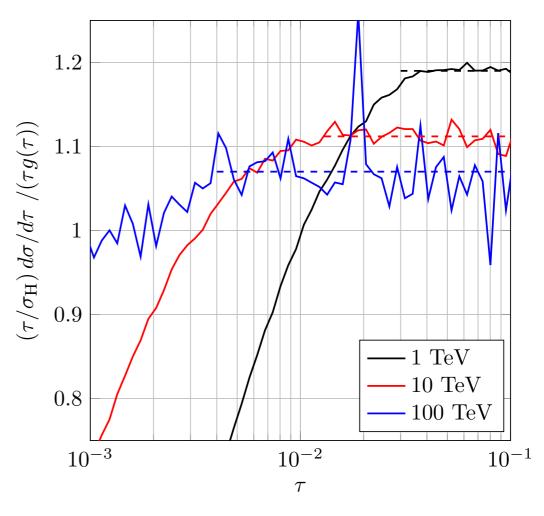
- Direct shower cross section calculation
- Compared to analytical result at various collider energy
- It looks good...

 $\Lambda$  vs.  $k_{\rm T}$  ordering, DEDUCTOR @ 10 TeV



This is the strategy of Dasgupta *et al.*, *Phys.Rev.Lett.* **125** (2020) 5, 052002.

 $k_{\rm T}$  ordering, DEDUCTOR, ratio to NLL



#### Deductor $\Lambda$ -ordered (local mapping)

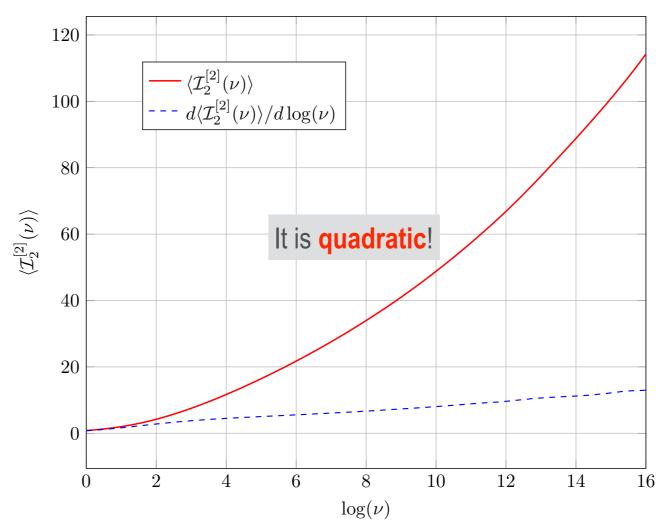
#### **DEDUCTOR** Lambda ordered shower

The ordering variable is the virtuality divided by the mother parton energy

$$\Lambda^2 = \frac{(\hat{p}_l + \hat{p}_{m+1})^2}{2p_l \cdot Q} Q^2$$

- Local momentum mapping (Catani-Seymour mapping)
- Proper soft gluon treatment with **full colour** evolution
- Only LL accuracy can be achieved.

 $\Lambda$  ordering, DEDUCTOR-LOCAL

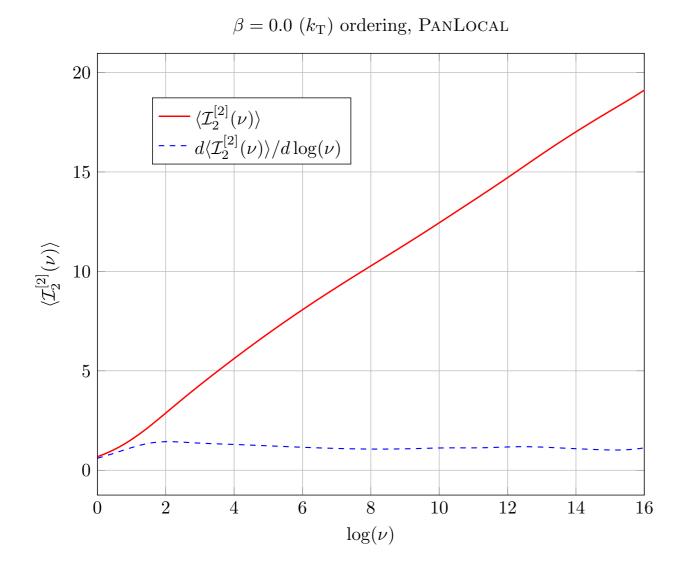


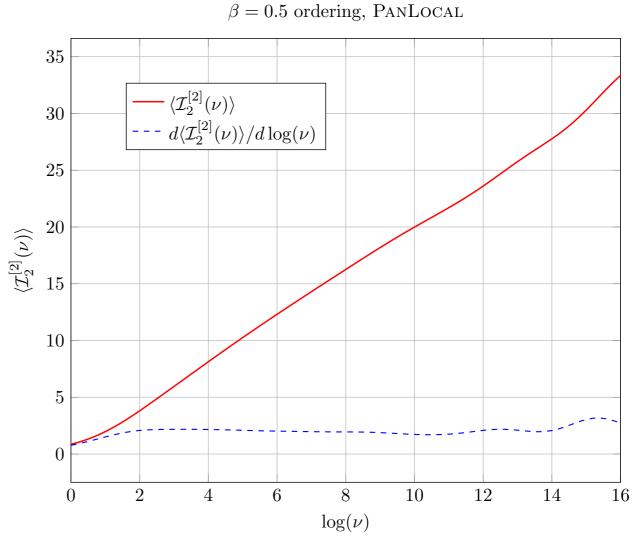
#### PanLocal Shower with full colour

Dasgupta et al., **Phys.Rev.Lett. 125** (2020) 5, 052002

#### PANLOCAL shower $\beta = 0, 0.5$

- The ordering variable is transverse momentum based
- Local momentum mapping (it is Catani-Seymour mapping)
- Proper soft gluon treatment with **full colour** evolution (this is not in the original definition)
- It works similarly like the **DEDUCTOR** kT ordered shower for  $\beta = 0, 0.5$ , but fails for  $\beta = 1$  (only LL accuracy).





### DEDUCTOR angular ordered

#### **DEDUCTOR** angular ordered shower

- The ordering variable is emission angle
- Deductor's global momentum mapping
- Proper soft gluon treatment with **full colour** evolution
- Even the LL summation fails

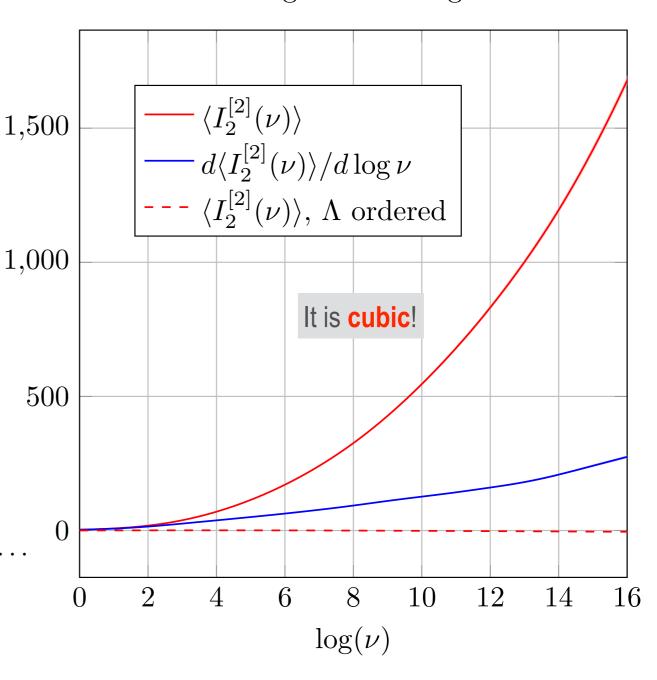
What goes wrong?

This term **agrees** with the analytic result.

$$\frac{\sigma(\mathbf{r})}{\sigma_0} = \exp\left\{\int_0^1 \frac{dx}{x} \left(\lambda_{\mathcal{Y}}^{[1]}(x,\nu) + \sum_{k=2}^{\infty} \lambda_{\mathcal{Y}}^{[k]}(x,\nu)\right)\right\} + \cdots$$

The shower generated "junk" spoils even the LL summation.

#### Angular ordering



#### Conclusion

- General and unified scheme for fixed order and parton shower calculation.
  - After all the parton shower is a lot of linear algebra and renormalisation group.
  - It is important to make clear the difference between **systematical approximation** and **'bending the theory**". (e.g.: LC+ vs. LC)
- ▶ We managed to reformulate the shower cross section in such a way to be able to compare with analytical calculations.
- ► As long as we do all order calculation, all the three approaches lead to the same cross section.
  - Fixed order calculations are truncated in  $\alpha_s(\mu^2)$  at cross section level.
  - Parton shower formulas are truncated in  $\alpha_s(\mu^2)$  in the **shower exponent.**
  - The "shower resummation formulae" is truncated in  $\alpha_s(\mu^2)L$  in the "Sudakov" exponent.
- ► We extensively studied the thrust distribution in e+e- annihilation.
  - We were able to prove analytically the NLL summation property only in lambda ordered **DEDUCTOR**.
  - With other shower schemes we showed numerically that  $I^{[2]}(\nu)$  is only a subleading log contribution. We did not say anything about the higher order contributions.

### Outlook

- We want to test more observables
  - Jet rates in e+e- annihilation
  - Drell-Yan kT distribution with and without threshold logarithm
  - ...
- ightharpoonup Check the  $I^{[3]}(\nu)$  operator numerically for kT, and PanLocal showers, and/or do the full analytical proof.
- Our shower scheme is still not general enough. It cannot accommodate the angular ordered shower correctly and systematically.
- ▶ In the recent years there have been lots of progress on NNLO fixed order calculations. This is a good base to start to think about **NLO parton shower**. Parton shower is not just "stitched" DGLAP evolutions, beyond the first order it is even more serious linear algebra. *It will be painful…*