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Perturbative cross sections

The main focus of this workshop is to calculate the pQCD cross sections as precise as possible, thus we have a pretty

integral
egra Bare PDF
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(Cannot be beaten by calculating higher and higher order.)
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Statistical space

Introducing the statistical space we can represent the QCD density operator as a vector

Bare PDFs for both incoming hadrons
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state sums and integrals
QCD density operator
Describes the fully exclusive
partonic final states.

The physical cross section is RG invariant as well as the
QCD density operator and the bare PDF.
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Statistical space

JHEP 09 (2007) 114

A vector in the statistical space can be translated as

({p, f.e,8,¢ 8" mlp) = ({e, st M{p, f1) (MU, f1m)[{€, 8" m)

An operator in the statistical space corresponds to a direct products of the corresponding quantum
operators:

A(p?) <= A" (p?) © AT (p?)T
When operators act on a state we have
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Fixed order cross sections




Infrared sensitive operator

Amplitudes have soft or collinear singularities and they have divergences 1/« from the loops
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- \\/e want to describe the singularity structure in a process independent way.
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- Everything in the yellow blobs is considered hard.



Infrared sensitive operator

Consider the momenta coming from the hard part /

as fixed and on shell. m@
iﬁ TR

This gives us an operator as /
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Infrared sensitive operator

We can consider a more constructive approach to build the full

infrared sensitive operator. This operator basically represents the W
QCD density operator of a m — X (anything) process. %Q ,
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Constrains the off-shellness of the hard partons




Infrared sensitive operator

We have to introduce an ultraviolet cutoff to capture only the IR part of the amplitudes. At first order level in the real
graphs it is just a cut on an infrared sensitive variable of the splitting:

Oc(L; (P, [l {ny; 12) ~ 0k < 1)

Resolved and unresolved regions for D9 (12)

The singular surfaces may not extend outside of the 1
unresolved region.
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There can be no naked singularity!
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NkLO calculations

m» This is a good approximation as
Subtractions long as
Singularities cancel each other here ,u2 < ,ug
2\ y—1/, 2 2
[OJ — ( |0J[ ) o Zp (M2)] D(M ) D (M )’P(M )) % the D operator doesn'’t create
~ ~~ - resolvable partons, thus
=|pu(p?))
4 O(a§+1L2k+2) Hard part, finite in d=4 dimension D(,LL2)(9J ~ C)ﬂ)(ﬁ)
2 2 - otherwise we have to deal with
O(Agep/ 1) large logarithms,
2
L =log — ,u
2 'u‘]
Usually D~!(1?) is constructed by hand and D(u?) is its inverse.

Born term NLO contributions

Ve N\

Do) = T ) + 2 00— D2 )|

' [%z(ﬁ?)] {1p262)) = DO () |pM () = (PP (1) = DD () DD (11| p O (13) |

+0(a?) NNLO contributions

J/




NkLO calculations

We define an operator that is finite and doesn’t change the number of patrons and their momenta and flavours in such
way that

2 —1 2
(1 V() = (1) [F(p?) o Zr(p?)] D(p*)F~*(p*)
v —/—/
- IR finite operator - IR singular operator
- doesn’t create new patrons - does create new patrons
- doesn’t change momenta or - does change momenta and
flavours flavours

- its definition is ambiguous

With the help of this we can define a normalised IR singular operator as

X (p?) = [F(p?) o Zr(ph)] D) F )V (1) > (1] (u

from definition

The cross section can be written as

o[0] = (1| Oy X1 (11?) V(1) F (1) [ pu(1s?))
A,_/
when we don'’t have to

worry about large logs,
these operators commute

=1



Useful notations

It is proven to be useful to generalise the procedure of defining operator V(1) from D(11°) .

Let &/ be a linear operator in the statistical space (may or mayn’t change the number of partons):

A‘{p7 f) C, Cla S, SI}m) — /d{ﬁ, f7 é? 6/7 §7 §/}Th ‘{ﬁ7 f? é) 6/7 §7 §l}fn) ({ﬁa f? 67 él? §7 §,}Th‘*’4‘{p7 f7 C, C,a Sy S/}m)

We define a mapping, |-, : A — B = [A],,, in such a way that

B’{p7 f? C? Cl? S? S/}m) — /d{é7 él? §7 §,}m ’{p7 f? é? él? §7 §,}m) ({p7 f? é? él?‘é\? §/}m}8‘{p7 f’ C? 6/787 S/}m)

and (1][A], = (1]4

The combination A — |.A| appears frequently, thus it is useful to define: Al o =A-[A],.

f> V()

(| F(pz) o Ze(pg)] D(pg)| o F (1)




Fixed order cross sections

Parton showers

(in only two slides)



Shower Cross Section

The fixed order cross section is fine as long as we can calculate at “all order level”. But life is not that easy...

-truncated at NLO, NNLO level

- prefers large scale, 12 ~ Q?
_ N -Choose a hard scale, i ~ Q?

ol04] = (1] O, Xl (%) V(i) F () [ pu (1)) -Choose a cutoff scale, 15 > uf ~ 1GeV?

- prefers smaII scale, 1 < p> -Insert a unit operator before the measurement
-that is in conflict with the hard part operator as,

I = Xl(ﬂf)X (Mf)

U(pg,pl)
oOs] = (1O X1 () Xy () X (pi) Vi) F (pri) | (i)
=(I|rOJ
No resolvab2le radiation come 12 d,u2
from Xy (u?) operator, thus 2 2y _ tap” 2
these operators commute, Ui i) Texp{/uz 2 S(p )}
O X1 (17) = X1 (uf) O ::> f
1 2\ 1 —1,. 2 Xm(MQ)




First order shower

The generators of the unitary shower can be expanded in the coupling:

(g (NQ)
2T

(1) = 25002y 4 | 25

and the first order term is rather simple

| LoD (2, 2) O[F (12D (12, 12)],
L5y = |7y PRI gy ATUID e o)y
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Integrated real operator

- all the quantum numbers of the
emitted parton is integrated out

- it is not the contribution of the virtual
graphs

Real operator
all the quantum numbers of the
emitted parton is resolved

Note, the first order kernel is independent of the real part of the virtual graphs.

2

~"

pi=p

Glauber gluon
imaginary part of
the virtual graphs

~ 17T



Leading Color Approx. (LC)

Leading Color Approximation is widely used in parton shower implementations.

I 2

I 2

i

I 2

i

No colour interferences are considered. The colour space is diagonal in every step of the shower
Hpa f7 C}m)LC = ’{pv f7 C, C}m)

Colour group is reduced to U(3), the colour overlaps at the end of the shower is trivial

— % — % and (1’{6, C}m) = <{C}m‘{c}m> =1+ O(l/Ncg)

C
F= "9 2

In general the error terms are suppressed by l/Ng but they are LL contributions.

One can tweak the C4 /2, Cp factor to obtain LL and NLL for some observables. (See thrust result, later!)

We don't see how it can be improved systematically. No clear way to treat the error terms perturbatively.

But DEDUCTOR doesn’t use it at all!



LC+ Approximation

Despite of the name it is not an approximation of the colour space, it is an approximation of the shower evolution

operator.

LC+ part
- Diagonal operator in the color space

- Exact in the collinear limit

- Some soft interferences are included but
not all

- Easy to exponentiate

(1)
SO(42) = S{0, (1) + ASD (412)
\—— ——

Wide angle soft part
- Only wide angle soft singularities
- Only single log contribution

-Leads toonly 1/N 62 suppressed terms
- Can be treated perturbatively

This decomposition preserves unitary,

(1M () = (1S{e, (1?) = (1ASD(u?) = 0

and it allows us to treat the wide angle soft part perturbatively
in a very efficient and flexible way.

No approximation of the colour group, it is the
full SU(3) algebra

Can handle any colour interferences

ich, # 'l

At the end of the shower we calculate the full
SU(3) colour overlap without approximation,

ekl {c)n)

We have a very fast algorithm to do this, and
can deal with hundreds of partons.

No need of tweaking the C,/2, C; colour
factors.




Summing large logarithms with

parton showers



Summing logarithms

| don't trust in eye measure to clam LL or NLL accuracy of any parton shower. One way to check the summation
property of the shower is to gain analytical control on the shower cross section. Is it possible to do it? Is it simple?

ol0,] = (1|0, Texp{/% o S(u2)} V(i) F (pze) | pa(pn)

- “infinite” number of partons

- make measurement on these
multi-parton states

-impossible task to study the
log structure analytically

We should reformulate the shower cross section, in such a way that:
" more suitable for analytical studies
w without extra approximation (all the approximations have been done in the shower operator & (1 2))
- the effect of the measurement operator should be exponentiated

We want to test the log summation property of the parton shower cross algorithms
- study observables that exponentiates (thrust, Drell-Yan pT-distributions,...)
s analytical results are available



Preparing observables

Consider the Dell-Yan kT distribution:

Ok ){p: [, }m) = 2m)*0 P (k1 — kz({p}m){D: [} m)

This operator is not invertible, but its Fourier transform is,

OW)|{p, f.ob) = €P*2WI|(p £ }) . O O, frodm) = e ORI 1 1)

Similarly for thrust, we use Laplace transformation to make the measurement operator invertible,
O(”)’{pa fa }m) — e_VT({p}m) Hpa fa }m) ) O_l(y)‘{p, f7 }m) — el/T({p}m) ‘{pa f7 }m)

The formalism can deal with measurement operator that has an inverse, thus we almost always need some kind of
proxy to do the analytical studies of the parton showers. Sometimes it is just a simple integral transformation,
sometimes a generating functional. It is a good guideline to follow the footsteps of the analytic calculation.

AN

O(v) = O(r) and O(r) always has an inverse over the whole statistical space

20



Observable dependent shower

We define an operator that is finite and doesn’t change the number of patrons and their momenta and flavours but this
time with observable dependence

y(M2S "“) — [O(T) []:(Mz) o Zp (,LL2)] D(Mz)o_l(’l“)]P - IR finite operator
5 5 5 1 - doesn’t create new patrons
X (H]:(H ) © ZF(,u )] D(M )]]p) - doesn’t change momenta or flavours
- its definition obviously is ambiguous
- normalised
From the definition, it is easy to show that O(r) =1 = Y(u*r) =1

(1Y (2 r)O(r) = (L|O(r) U (g, 11°)

measurement after the
and the shower cross section becomes shower (many patrons)

o(r) = (1Y (uz,m) O(r) V(i) Fug) |pa(pa)) = (L|O@) U(uE, i) V(es) Fug) |ou(p)

measurement on the hard j _ T _
It is really an equal sign!

state (only few patrons)

2|



Observable dependent shower

The Y(u?;r) operator can be exponentiated in the usual way,

2 p dﬂz 2 : 2
V(py;m) = Texp FSy(u ;7)o o, with Y(uf;r) =1
pi

where . N
Syt =Y ) LR

du?

s Here the exponent has to be an all order expression to maintain the equality with the shower cross section.
w The operator Sy (u*; ) contains large logarithms of L(7) .

w \Ne can relate the Sy (1%; ) operator to the generator of the parton shower S () via

(LY 7) Sy () = (1P (i 7) O(r) S(4%) O ()

with the help of the ||, operation we can extract Sy (u?;r) as
Sy(p*sr) = [Y(phr) O(r) S(u*) 07 (r)|, — [Y(u*r) — 1] Sy(us7)

and this can be solved recursively order by order (in powers of the shower generator S(12) ).
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Observable dependent shower

We have two equations and two unknowns, so we can solve them recursively:

Sy(u?;v) = 283[5] (1) At first order level we have
k=1
00 8[1] 2; — [0 S 2 (9—1
Y(piv) =1+ YH(p*v) v (im) = 100 SOl
k=1 [1]¢,,2 4 dpi’ 72\ M1
Wt = [ o st 07,
Fog

The second order generator is a little bit more complicated:

P = [ T o) 5 07 )], [0 424 07 ()],

Now the shower cross section (in a kind of analytical form) is

o(r) = (1\Texp{/% d% (53[;” (1) + > Sy (xﬁﬂ) } V() O(r) F (i) |on(ps)

: k=2
\ This should lead to only

For many observables the subleading logs (NNLL,...).
exponentiated single emission

operator provides NLL accuracy.
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Thrust in e+e- annihilation

In this case the hard process at Born level is very simple, it is proportional to a single basis vector only with a quark-

antiquark pair:
‘ Pu (M12{ )) X

‘{pa f7 C, 0}2)

This is always eigenvector of the exponent, thus the exponentiation is

trivial:
SS 20 i, fre,¢}a) =

With this the cross section is rather simple,

A2/ Q2

V)Hpv f7 c, C}2>

This is the “golden nugget’.
The parton shower algorithm
can agree with the analytic

result.

a(r):exp{/ d:z:(

+Z)\ z, v )}

~"

This is the shower
generated “junk”. This
has to be subleading log
contribution.

> \\fe can study analytically the exponent
when it is possible,

Iy /

> \When it is hard to test analytically, we
can calculate the exponent numerically
and test its large log behaviour in terms

of log(v)
[[k](y) _ i [Oés(QQ/V)]nL[lk](V)

2T
n=%k

w® For NLL accuracy we should have
I (@) ~log" (v)

n

for every k > 1.

s For LL accuracy we should have
M) ~ log" (v)

n

for every k > 1.
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DEDUCTOR A-ordered

DEDUCTOR Lambda ordered shower
# The ordering variable is the virtuality divided by the mother parton energy

A2 — (ﬁl +ﬁm+1)2Q2
2p1 - Q
m Global momentum mapping

s Proper soft gluon treatment with full SU(3) colour evolution at amplitude level
" |n this case we can prove analytically that the shower sums up large logarithms at NLL level

A ordering, DEDUCTOR A ordering, DEDUCTOR

50

Quadratic

—50

—6 - <I£2](V)> | —150
(T () /dlog(v)
Y <I£2](1/)>), approx. = —200
| | | | | | | | | | | | | |
0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16

log(v) log(v) 75



DEDUCTOR A-ordered

DEDUCTOR Lambda ordered shower
m Direct shower cross section calculation

| C+ colour approximation with perturbative subleading colour improvement
s The first step of the shower is always exact in colour in e+e- annihilation.

A ordering, DEDUCTOR @ 10 TeV

NNNNH| | | NNNNH| | | NNNNH{

0.2 -
~ 0.15 =
3
~
= Subleading colour has
= no effect on the thrust
& 01p distribution.
=

—— DEDUCTOR
0.05 —— DEDUCTOR-COLOR N
—— NLL
Oxxuui | RN | Ll
103 102 101
T

0.2

0.05

A ordering, DEDUCTOR @ 10 TeV

Aleading log error
can hide very well in
the direct calculation!

—— DEDUCTOR-U(3)
- - - DEDUCTOR-CrU(3)
—— DEDUCTOR

L il | Lo il | Ll

103 102 10—1
T
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DEDUCTOR kT ordered

DEDUCTOR KT ordered shower
" The ordering variable is the transverse momentum of the splitting

s Global momentum mapping

s Proper soft gluon treatment with full colour evolution

" |n this case we cannot prove analytically that the shower sums up large logarithms at NLL level

w We check numerically the first couple of I21(v) coefficients.

|t Jooks OK for k=2 and can be explained by real-virtual cancellation, but hard to see what happens for k > 2.

) kr ordering, DEDUCTOR
kr ordering, DEDUCTOR T &

27



DEDUCTOR kT ordered

DEDUCTOR KT ordered shower
m Direct shower cross section calculation
- Compared to analytical result at various collider energy

|t looks good... This is the strategy of Dasgupta et al.,
Phys.Rev.Lett. 125 (2020) 5, 052002

A vs. kr ordering, DEDUCTOR @ 10 TeV kr ordering, DEDUCTOR, ratio to NLL

0.25\\\\\\\ T T T T T7T] T T T 177 _— n R
0.2 |-
8
= S
< 015) =
= S
g D
= 01| =
— —— A-ordered 'S
| - - - kp-ordered E
0.05 1/ —NLL :
O\\HH\ Lot Ll
10~3 10~2 101
T T
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Deductor A-ordered (local mapping)

DEDUCTOR Lambda ordered shower

' The ordering variable is the virtuality divided by the mother parton energy

A2 =

(ﬁl + ﬁm—l—l)Z Q2

2p; - Q

w Local momentum mapping (Catani-Seymour mapping)

s Proper soft gluon treatment with full colour evolution

s Only LL accuracy can be achieved.

A ordering, DEDUCTOR-LOCAL

120 -

100 |-

=60

40

20

— (7 ()
== AT (v)) /dlog(v)

It is quadratic!
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PanLocal Shower with full colour

Dasgupta et al., Phys.Rev.Lett. 125 (2020) 5, 052002

PANLOCAL shower 8 = 0,0.5
" The ordering variable is transverse momentum based

| ocal momentum mapping (it is Catani-Seymour mapping)
s Proper soft gluon treatment with full colour evolution (this is not in the original definition)
s |t works similarly like the DEDUCTOR kT ordered shower for 5 = 0, 0.5, but fails for 3 = 1 (only LL accuracy).

B = 0.0 (k1) ordering, PANLOCAL B = 0.5 ordering, PANLOCAL

20 |- - 35 | ]

— (1 )
-=- (T} (v)) dlog(v)

— (7 (v))
--- (Y (v)) /dlog(v)

30 |-

15

10




DEDUCTOR angular ordered

Angular ordering

DEDUCTOR angular ordered shower
w The ordering variable is emission angle | | | | |

s Deductor’s global momentum mapping
| | — (L)

w Proper soft gluon treatment with full colour evolution 1,900 - ° /12

 Even the LL summation fails

It is cubic!

What goes wronq?
J J 500

This term agrees with
the analytic result.

~~

_|_

The shower generated “junk”
spoils even the LL summation.
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Conclusion

> General and unified scheme for fixed order and parton shower calculation.
- After all the parton shower is a lot of linear algebra and renormalisation group.

- ltis important to make clear the difference between systematical approximation and “bending the theory’.
(e.g.: LC+vs. LC)

> \We managed to reformulate the shower cross section in such a way to be able to compare with analytical calculations.

> As long as we do all order calculation, all the three approaches lead to the same cross section.

- Fixed order calculations are truncated in aS(,uz) at cross section level.
- Parton shower formulas are truncated in as(,uz) in the shower exponent.

- The “shower resummation formulae” is truncated in aS(,uz)L in the “Sudakov” exponent.
> \We extensively studied the thrust distribution in e+e- annihilation.

- We were able to prove analytically the NLL summation property only in lambda ordered DEDUCTOR.

- With other shower schemes we showed numerically that / m(v) s only a subleading log contribution. We did not
say anything about the higher order contributions.
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Outlook

We want to test more observables
- Jetrates in e+e- annihilation
- Drell-Yan KT distribution with and without threshold logarithm
Check the 1 m(v) operator numerically for kT, and PanLocal showers, and/or do the full analytical proof.

Our shower scheme is still not general enough. It cannot accommodate the angular ordered shower correctly
and systematically.

In the recent years there have been lots of progress on NNLO fixed order calculations. This is a good base to
start to think about NLO parton shower. Parton shower is not just “stitched” DGLAP evolutions, beyond the first
order it is even more serious linear algebra. It will be painful...

33



