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e Not your fault, as almost all papers on the subject...
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e Plus they are either very obscure (but general)

Catani, Z.Phys.C 37 (1988) 357

e Or perform a direct calculation (still being a bit obscure)
Doria, Frenkel, Taylor Nucl.Phys.B 168 (1980) 93-110

Neither G, nor G, contribute to (3.9): G), because
it vanishes [11] after angular integration over ¢ and
G, due to its orthogonality to j4,.

Equation (3.11) shows that the non-cancelling
effective potential Vy is IR finite and consequently the
violation of the Bloch—Nordsieck mechanism is an IR
subleading effect (i.e. of order g*logE/A) [8].

Given the kernels (3.11), it is straightforward to
evaluate (3.9). One gets (Fig. 1)
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+ 95 Fy(v)), (3.14)

where F, and F, are the vector and scalar brems-
strahlung functions of the relative velocity vy
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Equation (3.14) gives the magnitude of the two-loop

Bloch—Nordsieck violating term for a general non

abelian theory involving a vector and a scalar gauge
bosons.

1 (3.16)

1
F,,(U) = é; ]og

S

Fig. 2. The ‘hard’ amplitude quark + quark + y* — quark + quark + y*. The solid lines represent quarks,

and the wavy lines photons. The ‘blob’ denotes the hard interaction, and the dashed line through the blob

indicates the discontinuity is to be taken. In all subsequent diagrams the photons are not shown, and the
‘cut’ hard amplitude is represented by a small circle.

We remark that the final answer is much simpler than we have any right to expect
from our technique. We have a strong suspicion that some more powerful cancella-
tion technique, which is more faithful to the group structure, must exist.

Since we are summing over all possible intermediate states the inclusive cross
section is given by Mueller’s theorem [5],

dO' _ Ag
flux —=—
d*Q 2

A(S;H.5,87), (2.1)

where A 1s the forward scattering amplitude for quark + quark + virtual photon,
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e These results are nevertheless very important

e All of our calculations rely on QCD Factorisation

e As such it is important to understand its current limitations
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KLN (Theorem) vs Bloch and Nordsieck (Conjecture)
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KLN (Theorem) vs Bloch and Nordsieck (Conjecture)

Divergences cancel if inclusive enough Divergences cancel inclusively in the FS

In the IS, require Coherent states



Int

r

oductio
n

o W
h
vB
oth
eri
if
co
rr
ection
S
SCa
le
lik
e
0 (m_
‘L



Introduction

2
e Why Bother if corrections scale like © (%) ?

2
o well, they don’t! Even for inclusive observable they scale as O ( e )

x1 x2S
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2
e Why Bother if corrections scale like © (%) ?

o well, they don't! For exclusive observable the situation is even worse
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» Before I start, a little digression on Factorisation < Cancellation of IR Singularities:




Introduction

e One of the main assumptions: each block may be divergent, but it cancel in the sum

H
742745742 =0
o

(= = Singularities of...)
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e Extra soft gluons connecting IS particles, if divergent and non cancelling,
spoil Factorisation...

H
zf+zf+ +2 FO

;‘f{-[’:-p +& +2 o
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IR Finiteness: NLO Analysis

e Given a process do = dog + [doy +dogr] + ...

e We can compute virtual and Real corrections

dO'V N

_ A

? dO'LQ + dO'\/,ﬁn

27 e |2




IR Finiteness: NLO Analysis

e We are only interested in the divergent part of real corrections

o [ 95 dQy -
R T 4} E1+2 2(27)d-1 &

(d)

Emax dE CQ(3) .
dog = / £ £ lim [Fg') (p1,p2,pv;pg)] +dop" = dogV + ...
0

do®" = Eiky X doyo
o C dQ2
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IR Finiteness: NLO Analysis

e Given a process, we can compute the relevant virtual and real corrections

NN

2 1 1 — | . F 2 1 — ﬂ
do s (4) Cr ( V) - div aS('u)x& 1+h ln(, 'B) -

> dO'LO + dO'V,ﬁn do'R — o . Zﬁ

Lo do = dog + [finite| + ...

dO'Lo




IR Finiteness: NLO Part 2

e This derivation is already cumbersome and intrasparent at NLO

o We can get a broader perspective if we take a different path:

decay decay decay prod prod prod
Oyo = doy doy, =do,  +do

/ , '\ -
:\m\< FOICS o LI \




IR Finiteness: NLO Part 2 (V)

e For this need to look at the analytical structure of virtual corrections:

(Catani et al. hep-ph/0011222)

decay RS decay
do, " =1, Xdo,  + ...

1% (6.1 pismi}) =
+ ) T Ty

_//(21
RS
ya mjr }

which is symmetric under the simultaneous exchange of the initial states

(47T)6 - :BO 5R.S
F(1—e) q2(e Po )

\

G(V(CC)(,.m,m.).1 1'_”_2@(.)ﬂ
‘Sjk| | jk S_/kr R kre ' | 7T 2 Sjk d

‘MS

decay prod
do, =do,  + ...



IR Finiteness: NLO Part 2 (R)

e The real emission case is even simpler, in fact the Eikonal term

Is homogeneous in the hard momenta, and so must be Eikg

deca
do-=%

e decay prod o
. = Elkp X do;| =do, "+

O



IR Finiteness: NLO Part 2 (V+R)

e Thus, the NLO xs is IR finite

do = doo + [finite] + ...
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IR Finiteness: NNLO

e We can easily extend the argument at NNLO:

decay decay decay decay prod prod prod prod
doyyo = doy,, ~ +dog, = +dog, doyyo = doy, +dog, +dop,

/ ﬂ T _— 2
’E:VW\\<P2 [P 2,08 {0 Ph] ,>,V>\M




IR Finiteness: NNLO

e We can easily extend the argument at NNLO:

decay decay decay decay prod prod prod prod
doyye = doy,, ~+dog,  +dog, doyyo = doy, +dogp, +dop,

/r, T~ -

\ Pz { Pv'?“fz}"" [~ By PagPa ] '>’va\‘

N
Py

l

The argument here is only strictly valid for the coulourless FS!



IR Finiteness: NNLO (VV)

e Double virtual corrections behave similarly to the NLO case:
It’s a form factor that has a simple dependence on the two hard momenta,
and as such it's the same for both decay and production.

(Becher, Neubert hep-ph/0904.1021)
(Mitov et al. hep-ph/0903.3241)



IR Finiteness: NNLO (RR)

e Double Real corrections are described by either one soft gluon:

i,a,0) Pi,u A
J — T,.a

g pi - Pg "V L



IR Finiteness: NNLO (RR)

e Or by the emission of two soft partons

JL1E2 (p1, p2) = 3 {{2’3 (p1),J52 (p2)}

km p,UZ_kHZPM
. E:n 1 2

ki-(p1—p2)

\ (p1-p2)lki-(p1+p2)]

2[k;i-(p1+p2)]

H1 M9 |
YRLY - g2

(ki-p1)(ki-p2) = Pp1-p2




IR Finiteness: NNLO (RR)

e Double Real corrections are described by either one soft gluon:

e Or by the emission of two soft partons

JAE2 (p1, p2) = % {{é’ﬂ (p1), J57 (p2)}

H1 _H2 Ho  H1 i H1 , H2
+ /Ff Y oTa ki Py kP, ki-(p1—p2) K. K N gH1H2
Md@2d8 Hi=1 " | (pr-p2)lki-(p1+p2)]  2[ki-(p1+p2)] | (ki-p1)(ki-p2) = P1-p2
k - —

Both these functions are again homogeneous in the external momenta



IR Finiteness: NNLO (RV)

e Real Virtual corrections have both explicit % and phase-space divergences




IR Finiteness: NNLO (RV)

e Real Virtual corrections have both explicit % and phase-space divergences

, (1
My (pvip1. P2, pg) ~g2 € [J,f DM (pv; p1, p2) + gsz./ﬁ( 'Mo (pv; p1, p2)



IR Finiteness: NNLO (RV)

0 (
My (pvip1. P2, pg) ~g2 € IM,@) + 8202 Mo (Pv;P1,P2)]

2 H H
. P; P; 1
54 (p1, pai pg) = ifase ) TETS | — — | g (e.pgi piv Py
(P1,P2i Pg) = ifabec ) T°T ol I (€, pgi pis P))

ij=1
i#]

— g1(12) (e,pg;P1,P2) CAJa’(O)’y (P19P2§Pg)

(Catani, Grazzini Nucl. Phys. B 591 (2000))



The one-loop Soft Current

JaDH (P1,P2;Pg) = g1(12) (6,,0g;,01,,02) CAJa’(O)’” (P1,P2;Pg)

e Purely non-Abelian, and thus we recover the well-know fact
that in Abelian theories this process is IR-finite, even with massive quarks.



The one-loop Soft Current

J2 V4 (1, pa; pg) = &5 (€. Pgi P1- P2) Cad™ PP {pscp2; p)

e J, as we have already discussed is invariant in the crossing



The one-loop Soft Current

e Let's take the massless case first

(1) (€, pg:; ) = 1 100 -9r*(1+e¢) | (=s12 = 16)
g12 9pgrp1?p2 o 1671.2 62 r(1 —26) _(_51g_i5) (_Szg_i5)_

e And, given that we are only interested in Re(g) at NNLO

R [g1(12) (€. pgi —P1, —Pz)] =R [gf;) (G,Pg;Pth)]



The one-loop Soft Current

e Let's take the massless case first

R [g1(12) (e, pgi —p1, —Pz)] =R [g1(12) (6,pg;p1,,02)]

We conclude that in the massless case there are no additional singularities at this order



The One-lOOp SOﬂ Cu rrent (1. Bierenbaum, M. Czakon and A. Mitov, Nucl. Phys. B 856 (2012))

e In the massive case

3
g5 (€:Pgip1.p2) = ) fi (Pgipr. p2) M (€. pgi p1. p2)

=1



The One-lOOp SOﬂ Cu rrent (1. Bierenbaum, M. Czakon and A. Mitov, Nucl. Phys. B 856 (2012))

e In the massive case

g1(12) (6,,0g;,01,,02) = Z fi (P53P1,P2) Mi; (G,Pg;Pth)

=

Mi (e, pgi p1. p2) ok 1
1 5 y P11, P2) = ,
& (27)9 (k2 + 6] [(k + pg)2 - i5] [—2p2 - k +i6]
M, (€, pg: ) = Ik |
2 \€, PgiP1,P2) = (Zﬂ)d [kz n ,'5] [2,01 - k + 2pq - pg + i5] [—2p2 -k +i6]
ddk 1

Ms (€, pg; p1, P2) =
’ (2m)% (k2 + i8] | (k + pg) + i [2p1 - k +2ps - pg + 6] [~2py - k + i8]



The one-loop Soft Current (M1)

d?k 1

My (€, pg; P15 -
1 (€. Pgip1. p2) (27)? (k2 + i8] [(k +pg)’ + i5] [=2p2

Feynman parametrisation

(X1 n X2)—1 +2¢

2 pc
Mi (€, pg; p1, p2) = —Gi (6)]_[/ ax;
=l 0 [m

. ~11+€
2 _ 525 X2 — 15]

-k +16]



The one-loop Soft Current (M1)

M (evpg;PhPZ) o (—Szg — i5)_1_2€ = — ‘Szg|_1_2€ g2/ me

Perform the crossing {si;.s2.} — {-si;.—s2;}  and take the soft limit

Mi (€, Pgi—P1.—P2) = =M (€, pg; p1, p2) €27 o« —E ;€72



The one-loop Soft Current (M2/3)

e A similar analysis yields

—2e¢ —2ime

Ma3 (€, Pg; —p1,—p2) = Ma3 (€, pgi p1, p2) € 27 o E, e



The one-loop Soft Current

97 Y o B o
8 e.pr o1 po) =57l (e ppr ) = P 2 S et

e Expand and plug this back in the ME expressions and match it to CS

a

o |
* % ( V)n2+0(e)
4

1 1
R 81(2)(€,Pg;—P1,—P2)] = %[ggz)(e,pg;pupz)] T



The Divergent remainder

e The soft current at one-loop is proportional to the tree-level one

e Thus, our result is proportional to that obtained at NLO

decay decay

dogy ~ = Eiki(p1, p2) X doyg ™ + -

div

dogry = Eikj (—p1, —p2) X dog = Eik (p1, pz) X dog + A[dO'RV |+---



The Divergent remainder

e The soft current at one-loop is proportional to the tree-level one

e Thus, our result is proportional to that obtained at NLO

Aldog)'] =

(as(W) P 2CACE 2 [ 1 (1=v\ _|(1-v
In | - + 1
2 € 2v + v




The Divergent remainder

Aldog)'] =

- _2 2 - ) -

2 1 — || =

s (1) CaCr m In | - ")+ 1 i’ doo.
2 € 2v + v

lim Aldo@¥] ~ 1 —v ~
s [ RV] §2

The divergence disappeatrs if one of the two quarks is massless



The Divergent remainder

- _2 2 - ) -

- as(U)|” 2CACr 7 | 1 — v 1 —v
Aldoy'] = | = l + 1 doo.
A0y 2 € 2v n(_ +v) ( ) 710

lim Aldo@¥] ~ 1 —v ~
s [ RV] §2

Is formally of higher twist (as expected from previous analyses)



The Divergent remainder

Aldog)'] =

r 12 2T 1 _ - 1 _
as(U)|” 2CACr 7 | 1 n |- % L %
2 € 2v + v

lim Aldo@¥] ~ 1 —v ~
s [ RV] §2

Is formally of higher twist (as expected from previous analyses)

Thus it’s not really divergent, it’s just that our framework for factorisation doesn’t work



Conclusions

e Off-Shell: Finite e On-Shell: divergent




Conclusions

e On-Shell: divergent

e The scaling suggests that one could use a formalism

4
m
were we neglect terms of order S—Zq

Mg

P

> 1

while retaining those of order

(Pietrulewicz et al. 1703.09702)



