

ECFA Detector R&D Roadmap: Detector R&D for the HL-LHC (post LS3)

19th February 2021

Chris Parkes On behalf of ATLAS, CMS & LHCb

With thanks to:

Frank Hartmann (CMS), Francesco Lanni (ATLAS)

Credit:xkcd

IF A RESEARCHER SAYS A COOL NEW TECHNOLOGY SHOULD BE AVAILABLE TO CONSUMERS IN...

WHAT THEY MEAN IS...

THE FOURTH QUARTER OF NEXT YEAR	THE PROJECT WILL BE CANCELED IN SIX MONTHS.
FIVE YEARS	I'VE SOLVED THE INTERESTING RESEARCH PROBLEMS. THE REST IS JUST BUSINESS, WHICH IS EASY, RIGHT?
TEN YEARS	WE HAVEN'T FINISHED INVENTING IT YET, BUT WHEN WE DO, IT'LL BE AWESOME.
25+ YEARS	IT HAS NOT BEEN CONCLUSIVELY PROVEN IMPOSSIBLE.
WE'RE NOT REALLY LOOKING AT MARKET APPLICATIONS RIGHTNOW.	I LIKE BEING THE ONLY ONE WITH A HOVERCAR.

HL-LHC: an amazing opportunity

 The LHC has completed the first of three decades of operations

- ~4000 papers. Higgs > 10k citations, Pentaquark > 1k.
- Upgrade I all expts currently under installation during LS2
- ATLAS, CMS Upgrade II for HL-LHC construction commencing for installation during LS3
- HL-LHC enlarge data sets by order of magnitude
- Our ability to exploit the HL-LHC is limited by our detector technology: spatial & time resolution, radiation hardness, cost
- Standard requirement: 25ns signal collection

HL-LHC Timelines

Commissioning with beam

- HL-LHC will run from 2025-~ 2040
- Current schedule has shutdowns in 2031 (LS4) & 2035 (LS5)
 - In addition to end of year stops
- Detector construction typically 5+ years before shutdown for installation
 - R&D for LS4 (LS5) projects over next five (ten) years

HL-LHC (post LS3) Projects

LHCb Upgrade II

- Major Upgrade of LHCb for HL-LHC era in LS4
 - Preparatory work / consolidation in LS3
 - Strong support in European strategy
 - EOI & Physics Case approved by LHCC/RB
 - 2021: Framework TDR, CDR of HL-LHC

Beyond Flavour

Topic	Comment	
Spectroscopy	Enormous yields in gold-plated final states	
	e.g. 4M $\Lambda_b^0 \to J\psi pK^-$ decays ('pentaquark' mode)	
Higgs	Measure Higgs-charm Yukawa within factor 2 to 3 of SM value	
$\sin^2 \theta_W$	Uncertainty $< 10^{-4}$, better than LEP/SLD	
Proton structure	cture Precision probes at extremely low and high Bjorken-x values, with $Q^2>10^5{\rm GeV}^2$	
Hidden sector	Sensitivity to most of relevant parameter space for dark-photon models	

HL-LHC (post LS3) Projects

CMS in LS5

- LS3 Upgrade, almost fully lasting until LHC end
 - main upgrades large, not accessible/replaceable after LS3 (e.g. Outer Tracker, HGCAL)
- One exchange of the inner layer/rings of the pixel detector
- Maybe exchange inner rings of End-cap Timing Layer
- No agreed plan on future upgrades but some ideas where could profit from advancements in technology
 - mainly in forward

Endcap Timing Layer

HL-LHC (post LS3) Projects

ATLAS in LS4/LS5

ITk

- The HL-LHC upgrade full installation of upgraded detectors and electronics in LS3
- Future Partial replacement:
 - Inner Tracker Pixel (ITk-Pixel)
 - High Granularity Timing Detector (HGTD)
- Technology advance may provide opportunities for possible evolution of the trigger system

HGTD

Pursuing HL-LHC R&D while working on other projects

- LHC experiments happy to collaborate on R&D across projects
 - prohibit simultaneous physics research on more than one LHC experiment (ensuring scientific independence)
 - Many engineering and technical staff in multiple experiments
 - All have Technical Associate Memberships that allows work on detector projects (while pursuing physics on other experiments)
- Future accelerator based projects
 - Strong encouragement from LHC spokes for pursuing R&D in collaboration with LHC experiments - identify synergies and avoid duplication in R&D
 - LHC will trial technology for future projects and much R&D can likely use these projects as the starting point for plans
- CERN R&D Programmes (RD50, RD51, RD53+...) play an important role in common R&D

TF1: Gaseous Detectors (& Large Scale Tracking)

LHCb Upgrade II: Muon system

- Requirements
- -Rates up to several MHz/cm² in the inner regions
- -Efficiency > 95% within 25 ns
- -Stability up to 6 C/cm² accumulated charge in 10 years of operation

- R&D on μ-RWELL
- -Single-amplification stage, spark-protected resistive MPGD based on a breakthrough technology suitable for large area planar tracking devices
- -The detector is being characterized: gas gain ~ 10⁴, rate capability ~10 MHz/cm², efficiency ~97%
- A design for the high rate has been found which is suitable for a simple industrialisation process

 Chris Parkes, ECFA R&D Roadmap, February 2021

TF1: Gaseous Detectors (& Large Scale Tracking)

CMS: RPC, ATLAS: RPC/NSW, LHCb: RICH, µ-RWELL

- New gas mixture with lower environment impact
- Recuperation systems
- Detectors
 - RPCs, GEMs, MWPCs...
 - RICH Radiators: C₄F₁₀
- Cooling Systems
 - Move to NOVEC, CO₂

https://e-publishing.cern.ch/index.php/CERN_Environment_Report/index

	GROUP	GASES	tCO₂e 2017	tCO₂e 2018
	PFC	CF ₄ , C ₂ F ₆ , C ₃ F ₈ , C ₄ F ₁₀ , C ₆ F ₁₄	61 984	69 611
	HFC	CHF ₃ (HFC-23), C ₂ H ₂ F ₄ (HFC-134a), HFC-404a, HFC-407c, HFC-410a, HFC R-422D, HFC-507	106 812	96 624
		SF ₆	10 192	13 087
		CO ₂	14 612	12 778
	TOTAL SCOPE 1		193 600	192 100

Source: CERN Environment Report 2017-18

TF1: Gaseous Detectors (& Large Scale Tracking)

LHCb Upgrade II: Tracking System

- Requirements:
 - large scale, low cost: 30m² per layer, 12 layers
 - 70µm resolution in bending plane
- R&D:
- Scintillating Fibre tracker.
 - Radiation hard NOL fibres. > 35kGy
 - Cryogenic operation SiPMs.
 - SiPMs reduce active area, micro-lenses.
 - Time resolution to provide y-segmentation ?
- Gaseous Solutions? No R&D currently

LHCb Upgrade II: Tracking System

- System before magnet (UT), inside SciFi (MT)
- Requirements:
 - Si Area for LS4 (with aim small scale in LS3)
 - UT Si 6m² . MT Si 20m²
 - Pixel size e.g. 50x150,100x300μm²
 - Radiation e.g. $5x10^{13}$ - $5x10^{14}$ 1MeV n_{eq} /cm²
 - Precision timing ?

- R&D: MAPS. First large-scale rad-hard CMOS detector at LHC
 - MightyPix based on MuPix/ATLASPix HV-CMOS
 - Other solutions? Synergy EP R&D, future accelerators?

ATLAS in LS4/LS5

- Replace inner two pixel layers ~1500 fb⁻¹
 - 3D pixel sensors: neutron fluence
 - CMOS Front-end ASICs: total ionizing dose
 - Add timing information 10-50ps ?
- Radiation hard MAPS
 - ITk-Pixel Inner System, minimize material
- Replace inner HGTD ring every 1000 fb⁻¹, middle ring 2000 fb⁻¹
 - degrade below 4 fC threshold for neutron fluence > 2.5 x 10¹⁵ 1 MeV-Si n/cm²

MAPs alternatives studied for Upgrade II but not yet sufficiently mature

(a) Large fill-factor

(b) Small fill-factor

LHCb Upgrade II: Vertex Detector (VELO)

- Requirements
 - Small scale: 52 modules U1
 - − Pixel size: <=55x55µm</p>
 - Timing: < 50ps per hit</p>

- Extreme Radiation: 6x10¹⁶ 1MeV n_{eq}/cm² at 5mm from beam
- Max Chip Data rate: 250Gbps
- R&D: Hybrid Pixel Detectors
- Sensors: Thin Planar small signals. Low Gain Avalanche Diodes isolation, radiation. 3D Dead areas (CMS interest also). Prototypes of all.
- Chips: TimePix4, TIMESPOT. Cooling: below CO₂?

CMS in LS5: Pixel Upgrade & Inner Rings

- Planar sensors with smaller pixel and correspondingly thinner
- Corresponding very fine pitch bump bonding (hybridisation)

CMS in LS4/5: Additional Pixel Disk in Forward?

- Or other additions on high precision timing
 - understanding/improvement on rad tolerance, smaller cells and higher fill factor

CMS – other items

- Radiation hard SiPMs a key technology
- Thermo-Electrical Coolers cool SiPMs or other applications

TF4: Photon Detectors & Particle ID

LHCb Upgrade II: RICH

- Aim: ~0.2 mrad single photon angular resolution
 - 50ps time resolution
 - 20-40 Cherenkov photon hits
 - Wide momentum coverage between 10 to 200 GeV/c
- Requirements: composite optics
 - novel opto-electronic chain (with ps-time resolution, 2-bits logic and a ns-gated latching scheme)
 - green-extended (cooled) photodetectors.
- R&D: Cooling and cryogenics;
 - New cost-effective optical and radiator materials;
 - Rad-hard photodetectors;
 - Rad-hard low-consumption ps-resolution high-granularity front-end electronics.

Figure 4: A CAD representation of the photodetector array

TF4: Photon Detectors & Particle ID

LHCb Upgrade II: TORCH ToF

- Timing information and precise photon reconstruction achieve a ToF resolution ~15 ps per track.
- Requirements:
 - 30m² of 1cm thick quartz with surface roughness ~1nm
 - MCP photon detectors with ~20 ps intrinsic resolution
 - Fast front-end ASICs with compatible timing resolution
- R&D:
 - Cheaper large-area quartz production and polishing
 - MCPs with high granularity (128x128 pixels over 2" active square area) withstanding integrated currents >100 Ccm⁻²
 - High resolution amp/discriminator/TDC readout chips with high channel count

TF6: Calorimetry

LHCb Upgrade II : Electromagnetic Calorimetry

- Increased interest in ECAL: LFU, electrons, π⁰, radiative decays
- Requirements:
 - Radiation regions: 1MGy, 200kGy, < 10kGy
 - Energy Resolution: $\sigma(E)/E \approx 10\%/\sqrt{E} \oplus 1\%$
 - Timing capabilities: O(10)ps for pile-up mitigation
- R&D: SPACAL, Shashlik with timing
 - Crystal Scintillator, Tungsten absorber
 - Polystyrene fibres, Lead absorber
- Timing Layer
 - i-MCP layer for 10-20ps, Si layer?

TF7: Electronics & On-detector Processing

- ASIC feature size CMOS e.g. 28 nm
- CERN support for chips important
- Next-generation rad hard data optical links
 - Low power, low-mass, towards 100 Gbps?
 - with silicon photonics ?
- DC-DC converters higher input V?
- Processing Both ON and OFF detector
- Innovative algorithms for real-time trigger applications in **heterogeneous** architectures
 - GPUs, IPUs, TPUs, FPGAs
- data-centre / commodity / cloud technologies for Online processing?

ssing ATLAS/ CMS / LHCb LHCb Upgrade II: Trigger & DAQ system

- GPU based real-time HLT1 reconstruction and triggering In LHCb Upgrade I
- U2 foresees 5x data throughput

TF8: Integration

LHCb Upgrade II – but many points in common

- mechanical challenges for inner trackers
 - support structures: lightweight material in the acceptance with stringent stability and radiation tolerance requirements.
- original solutions for neutron shielding for critical components
 - SiPMs
- Robotics and remote intervention?
 - VELO module replacement
 - Central part of the Calorimeter
- In General, R&D should also be carried on the radiation tolerances of the material used
 - glue, rubber, support structure...

Nuclear power plant robot

TF9: Training

- "Learning by Doing"
 - The HL-LHC experiments will be the foremost particle physics research environment for the next 20 years
 - As such they provide the primary training environment for our community
- Provides both opportunities (R&D & operations) & responsibilities
 - Responsibility to be involved in training activities
 - Collaborations have surprisingly little centralized formal training activities for organizations of our size but numerous strong supporting activities
- Balance between internationalisation & reducing travel
 - Equal access, CO₂ footprint

Summary: Detector R&D for the HL-LHC

 Our ability to exploit HL-LHC limited by our detector technology

Timing at < 50ps; radiation hardness; low-cost, high granularity

- LS4/LS5: R&D period next five (ten) years
 - LHCb Upgrade II, larger scale than previous versions
 - ATLAS/CMS by LS5 inner pixels, timing dets

 HL-LHC provides the proving ground for the technologies of the future, collaborate on R&D

References

LHCb Upgrade II

Expression of Interest: CERN-LHCC-2017-003
 http://cdsweb.cern.ch/record/2244311?ln=en

Physics Case: CERN-LHCC-2018-027
 http://cdsweb.cern.ch/record/2636441?ln=en

- Contact: Matteo Palutan
 - U2 Planning group chair & Deputy Spokes

ATLAS Post-LS3 Upgrades

Contact: Francesco Lanni

No post-LS3 references yet. Systems for partial replacement

- High-Granularity Timing Detector. ATLAS-TDR-031
 https://cds.cern.ch/record/2719855?ln=en
- Inner Tracker Pixel Detector. ATLAS-TDR-030 https://cds.cern.ch/record/2285585?In=en

CMS Post-LS3 Upgrades

Contact: Frank Hartmann

No post-LS3 references yet. Systems for partial replacement

- Inner Tracker for Upgrade II. CMS-TDR-014
- https://cds.cern.ch/record/2272264
- Endcap Timing Layer for Upgrade II. CMS-TDR-020

https://cds.cern.ch/record/2667167?ln=en

LHCb Muon µ-RWELL

- G. Bencivenni et al., 2015_JINST_10_10_P02008
- G. Bencivenni et al., 2019_JINST_14_P05014

LHCb Large Scale Tracker References

- Upgrade I SciFi TDR: <u>http://cdsweb.cern.ch/record/1647400?In=en</u>.
- LHCb Original straw tubes:
 http://cdsweb.cern.ch/record/519146?ln=en

 Fred Blanc. Upgrade II presentation. Scintillating fibres and depleted silicon sensors for the LHCb Mighty Tracker. FCC Workshop.

https://indico.cern.ch/event/932973/contributions/4041318/attachments/2141574/3609095/20201112_LHCbMightyTracker_FCCWorkshop.pdf

LHCb CMOS based Tracker

- Upgrade I UT TDR: <u>http://cdsweb.cern.ch/record/1647400?In=en</u>.
- Mighty Tracker Design studies. Internal Note. LHCb-INT-2019-007
 - Available to potential collaborators. Contact: Chris Parkes
- HV-CMOS chip spec. LHCb-INT-2020-016
 - Available to potential collaborators. Contact: Chris Parkes

 Fred Blanc. Upgrade II presentation. Scintillating fibres and depleted silicon sensors for the LHCb Mighty Tracker. FCC Workshop.

https://indico.cern.ch/event/932973/contributions/4041318/attachments/2141574/3609095/20201112_LHCbMightyTracker_FCCWorkshop.pdf

LHCb VELO Upgrade II

- Upgrade I VELO TDR:
- http://cdsweb.cern.ch/record/1624070?ln=en

- VELO U2 Design studies. Internal note in preparation
 - Contact: Paula Collins

LHCb Particle Identification

- Upgrade I RICH Systems TDR
 http://cdsweb.cern.ch/record/1624074?ln=en
 - Contact: Carmelo D'ambrosio

- TORCH LHCb Public note. LHCb-PUB-2020-006
 http://cdsweb.cern.ch/record/2729016?ln=en
 - Contact: Neville Harnew