

Detector R&D Requirements for Strong Interaction Experiments at Future Colliders

- ① Electron Ion Collider (EIC)
- ② ALICE 3 A Next Generation Heavy-Ion Detector at the LHC
- 3 LHeC & FCC-eh/eA

Luciano Musa (CERN)

Credits:

- EIC: Elke Caroline Aschenauer (BNL,), Rolf Ent (JLAB) and Thomas Ullrich (BNL), S. Dalla Torre (INFN TS)
- LHeC & FCC-eh: Max Klein (Liverpool)
- ALICE 3: Jochen Klein (CERN), Marco Van Leeuwen (Nikhef)

"The quantitative study of matter in this new regime [where abundant gluons dominate] requires a new experimental facility: an Electron Ion Collider."

The Science Mission

- 1. How does the mass of the nucleon arise?
- 2. How does the spin of the nucleon arise?
- 3. What are the emergent properties of dense systems of gluons?

2015 - **US Nuclear Physics Long Range Plan**: "a high-energy high-luminosity polarized EIC [is] the highest priority for new facility construction following the completion of FRIB."

2018 – National Academy EIC Review: "The committee find that the science than can be addressed by the EIC is compelling, fundamental and timely."

Jan 2020 – U.S. DOE gives EIC CD-0 (Mission Need) and selects BNL to host the EIC

26-28 Jan 2021 EIC CD-1 (Alternative and Cost Range)

Design using most of the existing RHIC facility

Utilize existing operational hadron collider:

E_p: **41, 100 ... 275 GeV** / E_{ion}: **41 ... 110 GeV/n**

Add <u>electron storage ring</u> (E_e: **5** ... **18 GeV)**, cooling in existing RHIC tunnel and electron injector.

Two interaction regions

Center of Mass Energies: 20 GeV – 140 GeV

Maximum Luminosity: 10³⁴ cm⁻²s⁻¹

e, p, A Beam Polarization: > 70%

Ion Species Range: p to Uranium

CD-0: Mission Need

CD-1: Alternative and Cost Range

CD-2: Performance baseline

CD-3: Start construction

CD-4a: Start operation

CD-4b: Full RFPower Installed

Worldwide Interest in EIC Program

The EIC User Group http://www.eicug.org/

Formed 2016

- February 2021:
- 1253 collaborators,
- 33 countries,
- 251 institutions

Setting the stage

Ongoing EIC User Group "Yellow Report" Effort (2020)

Refine requirements and detector concept

EIC Project: EOI, May – November 2020

Eol for potential cooperation on exp. equipment

Next (Mar – Dec 2021)

- Issue Call for Detector Proposals
- Start Selection of Detector(s)

Detector General Requirements

- Large rapidity (-4 < η < 4) coverage; and far beyond in especially far-forward detector regions
- High precision low mass tracking
 - o small (μ-vertex) and large radius tracking
- Electromagnetic and Hadronic Calorimetry
 - equal coverage of tracking and EM-calorimetry
- High performance PID to separate π , K, p on track level
 - o also need good e/π separation for scattered electron
- Large acceptance for diffraction, tagging, neutrons from nuclear breakup: critical for physics program
 - Many ancillary detector integrated in the beam line: low-Q² tagger, Roman Pots, Zero-Degree Calorimeter,
- High control of systematics
 - luminosity monitor, electron & hadron Polarimetry

Integration into Interaction Region is critical

Not further discussed here

Low pile-up, low multiplicity, data rate ~500kHz (full lumi)

Moderate radiation hardness

Main Challenges

- PID
- EMCal at $< 2\% / \sqrt{E}$

EICUG: Yellow Report (YR) Initiative

Detector requirements and design driven by EIC Physics program and defined by EIC Community

Physics Topics → Processes → Detector Requirements

Physics Working Group:

Inclusive Reactions
Semi-Inclusive Reactions
Jets, Heavy Quarks
Exclusive Reactions
Diffractive Reactions & Tagging

Detector Working Group:

Tracking + Vertexing
Particle ID
Calorimetry
Far-Forward Detectors
DAQ/Electronics

Polarimetry/Ancillary Detectors

Central Detector: Integration & Magnet

Forward Detector: IR Integration

Provides critical input for detector proposals – handoff between Physics & Detector Working Groups in "interactive detector matrix": Collects physics requirements "real time", lists all technologies for a given region, and links to studies that established the numbers

EIC – Possible Detector Tehnologies

Possible detector technologies for the Main Detector fulfilling the physics requirements

Note: **setup used for CD1** – **many decisions still open** ⇒ will be decided by the Collaboration

system	system components	reference detectors	detectors, alternative options considered by the community						
	vertex	MAPS, 20 um pitch	MAPS, 10 um pitch						
tracking	barrel	TPC	TPC ^a	MAPS, 20 um pitch	MICROMEGAS b				
	forward & backward	MAPS, 20 um pitch	GEMs with Cr electrodes						
	barrel	Pb/Sc Shashlyk	SciGlass	W powder/ScFi	W/Sc Shashlyk				
ECal	forward	W powder/ScFi	SciGlass	Pb/Sc Shashlyk	W/Sc Shashlyk				
ECai	backward, inner	PbWO ₄	SciGlass						
	backward, outer	SciGlass	PbWO4	W powder/ScFi	W/Sc Shashlyk ^c				
	barrel	High performance DIRC & dE/dx (TPC)	reuse of BABAR DIRC bars	fine resolution TOF					
	forward, high p	fluorocarbon gaseous RICH	double RICH combining	high pressure Ar RICH					
h-PID	forward, medium p	aerogel	aerogel and fluorocarbon						
	forward, low p	TOF	dE/dx						
	backward	modular RICH (aerogel)							
e/h separation	forward	TOF & areogel & gaseous RICH	adding TRD						
at low p	backward	modular RICH & TRD	Hadron Blind Detector						
	barrel	Fe/Sc	RPC/DHCAL	Pb/Sc					
HCal	forward	Fe/Sc	RPC/DHCAL	Pb/Sc					
	backward	Fe/Sc	RPC/DHCAL	Pb/Sc					

^a TPC surrounded by a micro-RWELL tracker

Source: EIC CDR Experimental Equipment, Nov 2020, Table 8.4

^b set of coaxial cylindrical MICROMEGAS

^c also Pb/Sc Shashlyk

EIC – performance of reference detector

Source: EIC CDR Experimental Equipment, November 2020

	θ	Nomenclature			Tracking				Ele	ctrons and Pho	tons	π/К/р		HCAL													
η				Resolution	Relative Momentum	Allowed X/X _O	Minimum-pT	Transverse Pointing Res.	Longitudinal Pointing Res.	Resolution σ _E /E	PID	Min E Photon	p-Range (GeV/c)	Separation	Resolution σ _E /E	Energy	Muons										
< -4.6			Far Backward Detectors	low-Q2 tagger																							
-4.6 to -4.0		↓ p/A				Not Accessible																					
-4.0 to -3.5						Reduced Performance																					
-3.5 to -3.0						<u>σ_p/p</u>				<u>1%/E ⊕</u>	п			1													
-3.0 to -2.5						<u>~0.2%×p⊕5%</u>					<u>2.5%/√E ⊕</u>	suppression	20 MeV														
-2.5 to -2.0				<u>Backward</u>				<u>70-150</u> <u>MeV/c (B=1.5</u>			<u>1%</u>	<u>up to 1:1E-4</u>	.10	≤10 GeV/c	//-	<u>50%/</u>											
-2.0 to -1.5				<u>Detector</u>			<u>σ_p/p~</u>		<u>T).</u>	dca(xy) ~	dca(z) ~	<u>2%/E ⊕(4-</u>	2%/F ⊕(4- <u>Π</u>		<u>s 10 dev/c</u>		<u>√E⊕10%</u>		Muons useful								
-1.5 to -1.0								<u>0.04%×p⊕2%</u>			<u>40/pT μm ⊕</u> <u>10 μm</u>	100/pT μm ⊕ 20 μm	8)%/√E ⊕ 2%	suppression up to 1:(1E-3 - 1E-2)	<u>50 MeV</u>					for bkg, improve resolution							
-1.0 to -0.5																											
-0.5 to 0.0			Central	DI		<u>σ_p/p</u>	~5% or less X	200 MeV/c	<u>dca(xy) ~</u> 30/pT µm ⊕	<u>dca(z) ~</u> 30/pT μm ⊕	2%/E ⊕(12- 14)%/√E ⊕	П	100 M-V	≤ 6 GeV/c	<u>≥3 σ</u>	<u>100%/</u>	~500MeV										
0.0 to 0.5			Detector	<u>Barrel</u>		<u>~0.04%×p⊕1%</u>		<u>200 MeV/c</u>	<u>30/p1 μm ⊕</u> 5 μm	<u>30/ρι μιπ ⊕</u> <u>5 μm</u>	(2-3)%	suppression up to 1:1E-2	100 MeV	<u>≤ 6 GeV/C</u>		<u>√E+10%</u>											
0.5 to 1.0									·	•		·															
1.0 to 1.5									<u>dca(xy) ~</u>	<u>dca(z) ~</u>																	
1.5 to 2.0													<u>Forward</u>		<u>σ_p/p</u> ~0.04%×p⊕2%		<u>70 - 150</u>	<u>40/pT μm ⊕</u> <u>10 μm</u>	<u>uca(2)</u> <u>100/pT μm ⊕</u> <u>20 μm</u>	<u>2%/E ⊕</u>	<u>3σ e/π up to</u>				<u>50%/</u>		
2.0 to 2.5				Detectors				<u>MeV/c (B = 1.5</u> <u>T)</u>		<u> 20 p</u>	(4*-12)%/√E ⊕ 2%	15 GeV/c	<u>50 MeV</u>	<u>≤ 50 GeV/c</u>		<u>√E+10%</u>											
2.5 to 3.0						<u>σ_p/p</u>		<u> -7.</u>																			
3.0 to 3.5						<u>~0.2%×p⊕5%</u>																					
3.5 to 4.0				Instrumentation to separate charged particles from photons							Reduced Pe	rformance															
4.0 to 4.5		↑ e								1	Not Accessible																
> 4.6			Far Forward Detectors	Proton Spectrometer Zero Degree Neutral Detection																							

Interactvie version of this matrix ⇒ Yellow Report Physics Working Group Wiki page: https://physdiv.jlab.org/DetectorMatrix/

- -4.5 /+5 m machine element free region for central detector
- 25 mrad crossing angle
- Individual detector component space allocations provided by the Yellow Report Working Groups

EIC – Tracking

All-silicon option

6-layer barrel, 5+5 disks

for back/forward regions

Option: light (Cr) GEMs for the

most external disks

Sensor: MAPS with $\leq 20 \mu m$ pitch, ...

Needs new sensor to meet EIC requirements

⇒ consortium of EIC groups joined the ongoing sensor development effort for ALICE ITS3 (CERN)

Detector Requirements

- Vertex (central): $\sigma_{xyz} \sim 20 \mu m$, $d_0(z) \sim d_0(\phi) \sim (20/p_T \text{ GeV} + 5) \mu m$
- Resolution
 - central: $\sigma(p_T)/p_T \sim 0.05\% \cdot p_T \oplus 0.5\%$
 - fwd/bwd ($1 < |\eta| < 2.5$): $\sigma(p_T)/p_T \sim 0.05\% \cdot p_T \oplus 1\%$
 - fwd/bwd (2.5 < $|\eta|$ < 3.5): $\sigma(p_T)/p_T \sim 0.1\% \cdot p_T \oplus 2\%$
- Material budget: $X/X0 \lesssim 5\%$
- Minimum p_T: 100 MeV/c pions, 135 MeV/c Kaons

Hybrid option

silicon vertex + TPC (barrel), 7 silicon disks for back/forward

option 1: TPC + external layer of MPGD,

supports tracking + time

option 2: coaxial layers

of μ -RWELLs

EIC - hadron ID

Requirements

- π^{\pm} , K^{\pm} , p^{\pm} separation over a wide range $|\eta| \le 3.5$
- Resolution: $\pi/K \sim 3-4 \sigma$, $K/p > 1 \sigma$
- Momentum-η correlation a different PID technology
 - $-5 < \eta < 2$: 0.2 < p < 10 GeV/c
 - 2 < η < 5: **0.2**
- Hadron cut-off: B=1T \Rightarrow p_T > 200MeV, B=3T \Rightarrow p_T > 500MeV

Needs more than one technology to cover the entire kinematics

EIC - hadron ID

Requirements

- π^{\pm} , K^{\pm} , p^{\pm} separation over a wide range $|\eta| \le 3.5$
- Resolution: $\pi/K \sim 3-4 \sigma$, $K/p > 1 \sigma$
- Momentum-η correlation a different PID technology
 - $-5 < \eta < 2$: 0.2 < p < 10 GeV/c
 - 2 < η < 5: **0.2**
- Hadron cut-off: B=1T \Rightarrow p_T > 200MeV, B=3T \Rightarrow p_T > 500MeV

Barrel

Reference: hpDIRC (high performance DIRC)

- Quartz bar radiator, light detection with MCP-PMTs
- Fully focused
- π/K separation \sim 3 σ @ 6 Gev/c
- Reuse of BaBar DIRC as alternative

R&D e.g.: add timing to the DIRC

expected resolution ~ STAR, sPHENIX

TOF (∼ 1m lever arm)

• LGAD (Low Gain Avalanche Detector)

Forward

Reference: dRICH (dual RICH)

- Aerogel and C-F gas radiators
- Full momentum range
- Sensor: Si PMs (TBC)
- π/K separation ~ 3 σ @ 50 Gev/c

Windowless RICH

- Gaseous sensors (MPGDs), CF₄ as radiator and sensor gas
- Low p complements required (TOF with 2.5m lever arm/aerogel (mRICH)

HP-RICH (high-pressure RICH)

- Eco-friendly alternative to dRICH
- Ar @ 3.5 bar / 2 bar \leftrightarrow C₄F₁₀ @ 1 bar / CF₄ @ 1 bar

EIC – hadron ID

Requirements

- π^{\pm} , K^{\pm} , p^{\pm} separation over a wide range $|\eta| \le 3.5$
- Resolution: $\pi/K \sim 3-4 \sigma$, $K/p > 1 \sigma$
- Momentum-η correlation a different PID technology
 - $-5 < \eta < 2$: 0.2 < p < 10 GeV/c
 - 2 < η < 5: **0.2**
- Hadron cut-off: B=1T \Rightarrow p_T > 200MeV, B=3T \Rightarrow p_T > 500MeV

Backward

Reference: mRICH (Modular RICH)

- Aerogel Cherenkov
- Focused by Fresnel lens
- e, π, K, p
- Sensor: SiPM / LAPPDs
- Adaptable to include TOF
- π/K separation $\sim 3 \sigma @ 10 \text{ Gev/c}$

2nd mRICH prototype was tested at Fermilab Test Beam Facility in June/July 2018

With resisting restarial action

TOF with 2m lever arm, 2 options

- LAPPD (Large Area picos Photon Detector)
 - MCP, Cherenkov in window, 5-10 psec
- LGAD (Low Gain Avalanche Detector)
 - Silicon Avalanche, 25-35 ps
 - Accurate space point for tracking
 - Relevant also for central barrel

HBD (Hadron Blind Detector)

- Unfocussed CF₄ Cherenkov det.
- π -threshold ~ 4GeV
- New gain stage proposed to improve e/π separation

EIC - ECal

Backward arm

High-resolution important in region $-4 < \eta < -2$

- Determines electron kinematics
- Physics requires $\sim 2\% / \sqrt{E}$
- Particle E: ~0.02 − 18 GeV

Outer part alternatives

- Pb/Sc, W/Sc Shashlik
- W poweder/ScFi Sampling

REFERENCE

PbWO₄ crystals (inner)

 Compact, radiation hard, luminiscence yield to achieve high energy resolution, including the lowest photon energies

SciGlass (Outer)

- EIC eRD51
- More cost efficient, easier manufacturing
- Potentially better optical properties

Sensor: SiPMs (TBC)

Barrel

Physics requires 10-12%/ \sqrt{E} in region -1 < η < 1

• Particle E: ~0.1 − 35 GeV

REFERENCE

Pb/Sc, W/Sc Shashlik

Pb, W absorber g high density absorber can provide 8-15%/ \sqrt{E} , energy resolution can be tuned by adjusting sampling fraction and frequency

W poweder/SciFi

- Compact, resolution 12-14%/ √ E Higher resolution
- PbWO₄, SciGlass

Forward arm

Physics requires $10\%/\sqrt{E}$ in region $1 < \eta < 4$

• Particle E: $\sim 0.5 - 100 \text{ GeV}$ • High Q²/high x

Pb/Shashlik, W/Sc Shashlik SciGlass

REFERENCE W poweder/ScFi

- Absorber: tungsten powder matrix with embedded scintillating fibers (0.5mm diameter).
- Modules can be made 2D projective
- Readout with light guides and SiPMs

EIC – Photon Detection Technologies

Photon Detection Technology critical for many PID devices

- High-gain: 10⁵ 10⁶
- Small pixels with individual readout: O(1mm pitch)
- Good timing (even with small signals): ≤ 100 ps (DIRC), ≤ 800 ps (mRICH, dRICH)
- Tolerance to magnetic field (1.5 3 T) and radiation (up to $10^{11} n_{eq}/cm^2$)

Possible solution driven by detector performance and operational parameters, with cost optimizaton in mind

Viable candidates for EIC applications

- Multi-anode PMTs (MaPMTs)
- Commercial Microchannel-Plate PMTs (MCP-PMTs)

- Large-Area Picosecond Photodetectors (LAPPDs)
- Gaseous Electron Multipliers (GEMs) a for gas-only RICH
- Silicon PMs (SiPMs)

R&D needs

LAPPDs: very promising, but not yet suitable for EIC

- ⇒ Reduce sensitivity to B field

GEM-based photosensors (low-cost, radiation hard)

- Improve performance in the UV useful for gas-only RICH
- develop of photocathode sensitive in the visible region

SiPM/SPAD: promising, quickly improving (driven mostly by automotive sector), cheap technology

- ⇒ can be operated up to 3T
- ⇒ Reduce sensitivity to neutron damage
- ⇒ Reduce DCR (presently too high for DIRC applications)
- □ Increase fill factor

The Science Mission

- 1. What are the **mechanisms of hadron formation** in QCD?
- 2. Can we prove the realization of **chiral symmetry restoration** (fundamental property of QCD)?
- 3. Are there violations of **fundamental properties of quantum field theories**?

Developing the Science Case

- Idea for new dedicated heavy-ion experiment at the LHC developped within ALICE in the course of 2018
- Presented at the <u>heavy-ion town meeting</u> (CERN, Oct 2018)
- Expression of Interest submitted as input to the EPPSU:
 - Expression of Interest, Physics Briefing Book, Presentation Granada, Summary Granada
- Initiative supported in ESPPU

- Plans presented at several conferences in 2019, 2020
- Physics and detector working groups formed (Sep 2020) to host physics discussion and detector studies
- Letter of Intent in preparation for submission to LHCC by end of 2021

Fast and ultra-thin detector with precise tracking and timing

- Ultra-lightweight silicon tracker with excellent vertexing
- Fast to profit from higher luminosity (also with nuclei lighter than Pb): 50-100x Run 3/4
- Large acceptance \Rightarrow barrel + end caps $\Delta \eta = 8$
- **Particle Identification**: TOF determination (≤20 ps time resolution), Cherenkov, pre-shower/calorimetry
- **Kinematic range** down to very low p_T : ≤ 50 MeV/c (central barrel), ≈ 10 MeV/c forward (dedicated detector)

~12 tracking barrel layers + disks based on CMOS Active Pixel Sensors
Particle identification based on TOF, Cherenkov, em. shower

Dedicated forward detector for soft photons (conversion + Si tracker)

Further detectors under study (e.g. muon ID)

Possible detector technologies

System	System component	Reference detector	Alternative options		Physics channel
	Central - Inner Tracker	MAPS, < 10μm pitch	-		Multi-charmed baryons, dielectrons (HF rejection)
Tracking	Central - Outer Tracker	MAPS, ~ 20μm pitch	-		Multi-charmed baryons
	Forward & Backward	MAPS, ~ 20μm pitch	-		HF correlations, low-momentum dileptons and photons
h DID	Central	TOF + RICH (aerogel)	TOF + DIRC	fine resolution TOF (5ps)	Multi-charmed baryons
h-PID	Forward & Backward	RICH (aerogel) + TOF	RICH (gas) + TOF?	fine resolution TOF (5 ps)	Low p [⊤] pions: chiral production
a h comovation	Central	TOF + RICH (aerogel)	TOF + preshower/ECAL		Di-electrons, quarkonia, X(3872)
e-h separation	Forward & Backward	RICH (aerogel) + TOF	Preshower/ECAL + TOF?		Very low mass di-electrons
low-energy photons	Forward	Converter + Si-tracker	High-resolution ECal		Soft theorems
Ecal	Barrel	Sci-Crystal + Sci- Glass (long. segmentation)	metal-scint		Photons, jets
	Forward & backward	Sci-Glass	metal-scint		
Muons	Barrel	Iron absorber + chambers			New quarkonia, X(3872)

Inner Tracker

- DCA resolution < 25 um at pt = 100 MeV/c(first layer close to IP)
- $X/X_0 < 0.1 \% / layer$
- ultra-thin cylindrical CMOS sensors (MAPS) with pixel pitch $\lesssim 10$ um
- $\sim 10^{14} \text{ 1 MeV } n_{eq}/\text{cm}^2 @ R = 1 \text{ cm } (1 \text{ month Ar-Ar})$

Pixel timing resolution (resolve buch structure) < 25ns

Outer Tracker

- relative p_{T} resolution
 - central: ~2 % (n < 1.75)
 - forward: $\sim 10\%$ ($\eta = 3$)
- overall material budget < 10 % Xo to maintain p_T resolution in moderate B field (0.5 T)
- thin CMOS sensors (MAPS) with pixel pitch ~20 um
- $\sim 10^{12} 1 \text{ MeV n / cm}^2 @ R = 20 \text{ cm} (1 \text{ month Ar-Ar})$

Particle identification

Electron identification

- Low-mass di-electron spectra: 50 MeV/c < pτ < 3 GeV/c
 need hadron rejection > 1000x with electron efficiency > 80 %
- Electrical conductivity: 10 MeV/c < p_T < 100 MeV/c electron ID in forward region (p boosted by x10 at η ~3)

Hadron identification

- HF decay chains: 50 MeV/c < pt < 5 GeV/c
 - > 3 sigma separation of $\pi/K/p$

Photon detection

- Very low-energy photons for soft theorems: 10 MeV/c $< p_T < 100$ MeV/c clean identification, energy measurement
- Pointing to primary vertex for background rejection O(mm)

Muon identification

• Quarkonia & exotica: extend muon identification to lower p_T (~1 GeV/c)

forward conversion tracker

R&D needs and Challenges

- Inner tracker
 - minimal distance from IP requires retractable detector
 - ultra-thin layout: flexible wafer-scale sensors (MAPS)
 - position resolution O(1 um) requires small pixel pitch ⇒ small feature-size technologies
- Outer tracker
 - large areas to instrument: develop cost-effective sensors & modules
 - low material budget requires lightweight mechanics, cooling and services
- Time of Flight
 - large areas to instrument: develop cost-effective sensors
 - TOF resolution < 20 ps needed on the system level requires advances both on sensors and microelectronics
- Cherenkov
 - aerogel RICH: large area of single photon efficient sensors (visible light) (SiPM/SPAD, MAPS, LAPPD, ...)
 - or develop other geometries, e.g. DIRC, for large occupancy?
- Photon detection at low pt
 - develop system for very low p^T photons with pointing resolution

R&D on cylindrical vertex layers

Innermost layers with ultrathin, minimal material budget MAPS layers

- Replace ALICE ITS innemorst layers in LS3
- Vertex layers for ALICE 3

R&D running full steam for ITS3

Tests on bent silicon devices

- Mechanical integration of 300mm wafer-scale dummy chips
- Lab and beam tests of curved ALPIDEs
- Interconnection studies

Key role and drive in 65nm CIS process evaluation

Test chips and systems under design

Future: extend R&D to smaller feature-size technology (e.g. 28nm)

Submission in 65 nm process Bending of wafer-scale chips

Ultra-lightweight vertex and tracking detectors
Positioning first layers as close to IP as possible

Need large R&D effort on advanced materials, mechanics and cooling

An example of ongoing studies for ALICE 3

A (futuristic) rectractable Vertex Detector

LHeC, PERLE and FCC-eh

Powerful ERL for Experiments @ Orsay CDR: 1705.08783 J. Phys.G CERN-ACC-Note-2018-0084 (ESSP)

Operation: 2025+, Cost: O(20) Meuro

LHeC ERL Parameters and Configuration I_e = 20mA, 802 MHz SRF, 3 turns \Rightarrow E_e =500 MeV a first 10 MW ERL facility

60 x 50000 GeV²: 3.5 TeV ep collider

Operation: 2050+

Cost_(of ep) O(1-2) BCHF

Concurrent operation with FCC-hh

FCC CDR:

Eur. Phys. J.ST 228 (2019) 6, 474 Physics Eur. Phys. J.ST 228 (2019) 4, 755 FCC-hh/eh

 $50 \times 7000 \text{ GeV}^2$: 1.2 TeV ep collider

Operation: 2035+, Cost O(1) BCHF

CDR (2012): 1206.2913 J.Phys.G

Upgrade to 10³⁴ cm⁻²s⁻¹, for Higgs, BSM

CERN-ACC-Note-2018-0084 (ESSP)

Update CDR published in 2020

arXiv:2007.14491, subm J.Phys.G

Physics with Energy Frontier DIS

Published in 2020

Raison(s) d'être of ep/eA at the energy frontier

Cleanest High Resolution
Microscope: QCD discovery

Empowering the LHC/FCC Search Programme

Trasnformation of LHCC/FCChh into high precision Higgs facility

Discovery (top, H, heavy v's)

A unique Nuclear Physics Facility

5 page summary: <u>ECFA Newsletter Nr. 5, Aug 20</u>

LHeC Detector Design 7/2020

Current design leans heavily on HL-LHC technologies
But they are over-spec'ed for radiation hardness

General detector requirements

- High-resolution tracking system
 - o primary and secondary vertex resolution down to small angles
 - precise p_T measurement and matching to calorimeter
- Full coverage calorimetry
 - Electron energy 10%/ \sqrt{E} calibr. 0.1%
 - Hadronic energy 10%/√E calibr. 1%
 - Tagging of backward scattered electrons and photons
 - Tagging of forward scattered photons, neutrons and deuterons
- Full coverage muon system
 - Tagging and combination with tracking, no independent p measurement

LHeC Detector Design 7/2020

Key elements to the detector design

- LHeC will run simultaneously with the
 LHC ⇒ 3 beam IR with compatible optics
- Modular for assembly above ground and rapid installation
- No pileup
- Low radiation wrt pp
- Tracker radius: 60 cm
- Magnetic field: B = 3.5T
- Length x Diameter = $13 \times 9 \text{ m}^2$

Chalanging technology aspects related to the design of the interaction region

Synchronous ep/pp operation

Head-on collisions: large synchrotron radiation fan from outgoing ebeam

⇒ Eliptical beampipe accomodates synchrotron fan

Baseline design concept relies on present technology for detector magnets

Solenoid and dipoles have a common support cylinder in a single cryostat; free bore of 1.8m; extending along the detector with a length of 10m

Complex magnet configuration

- Solenoid Detector Magnet (3.5T)
- Dual dipole magnets (0.15 0.3 T) throughout detector region (|z| < 14m)
 - to guide e-beam in and out
 - bend e-beam into head-on collision with p-beam
 - Safely extract the distorted e-beam
- 3.5T superconducting NbTi/Cu solenoid in 4.6K liquid helium cryostat

2T scaled up to 3.5T

H. Ten Kate (1st CERN EP-R&D Workshop)

New ideas on thin magnets (cf. E. Perez at FCC workshop) and R&D programe for FCC relevant for LHeC

LHeC – The Large Hadron-Electron Collider at the HL-LHC

Barrel Calorimeters

Calo (LHeC)	EMC		HCAL	
	Barrel	Ecap Fwd	Barrel	Ecap Bwd
Readout, Absorber	Sci,Pb	Sci,Fe	Sci,Fe	Sci,Fe
Layers	38	58	45	50
Integral Absorber Thickness [cm]	16.7	134.0	119.0	115.5
$\eta_{ m max},\eta_{ m min}$	2.4, -1.9	1.9, 1.0	1.6, -1.1	-1.5, -0.6
$\sigma_E/E = a/\sqrt{E} \oplus b$ [%]	12.4/1.9	46.5/3.8	48.23/5.6	51.7/4.3
Λ_I/X_0	$X_0 = 30.2$	$\Lambda_I = 8.2$	$\Lambda_I = 8.3$	$\Lambda_I = 7.1$
Total area Sci [m ²]	1174	1403	3853	1209

- Complete coverage: $-5 < \eta < +5.5$
- Forward Region: dense, high density jets of few TeV
- Backward Region: in DIS only deposit of E < E_e
- Calorimeter depth
 - ECAL: 30 X₀ barrel & backward, ~ 50X₀ forward
 - HCAL: 7.1-9.3 Λ_1 barrel & backward; 9.2-9.6 Λ_1 forward
- Detector technologies (ala ATLAS):
 - ECal: Pb/LAr with accordeon geometry
 - HCAL: Pb/Scintillating tiles
 - Alternative: ECAL: Pb/Scintillator

 ⇒ eliminate cryogenics

Forward/Backward Calorimeters

Calo (LHeC)	FHC	FEC	BEC	BHC
	Plug Fwd	Plug Fwd	Plug Bwd	Plug Bwd
Readout, Absorber	$_{ m Si,W}$	$_{ m Si,W}$	$_{ m Si,Pb}$	$_{ m Si,Cu}$
Layers	300	49	49	165
Integral Absorber Thickness [cm]	156.0	17.0	17.1	137.5
$\eta_{ m max},\eta_{ m min}$	5.5, 1.9	5.1, 2.0	-1.4, -4.5	-1.4, -5.0
$\sigma_E/E = a/\sqrt{E} \oplus b$ [%]	51.8/5.4	17.8/1.4	14.4/2.8	49.5/7.9
Λ_I / X_0	$\Lambda_I = 9.6$	$X_0 = 48.8$	$X_0 = 30.9$	$\Lambda_I = 9.2$
Total area Si [m ²]	1354	187	187	745

LHeC – The Large Hadron-Electron Collider at the HL-LHC

- 7 concentric layers + 7/5 forw/backw disks
- Coverage: $|\eta| \lesssim 5$; $R_{out} \approx 60$ cm, $R_{in} \approx 3$ cm
- Total active Si surface: ≈ 41 m²
- Impact resolution: 5-10μm
- Technologies: MAPS, Si-strips

Barrel & ECAP Layers/Wheels

Tracker (LHeC)]	Inner Barre	l	ECAP			
		pix	$\operatorname{pix}_{\operatorname{macro}}$	strip	pix	$\operatorname{pix}_{\operatorname{macro}}$	strip
$\eta_{ m max}, \! \eta_{ m min}$		3.3, -3.3	2.1, -2.1	1.4, -1.4	$\pm[4.1, 1.8]$	$\pm[2.4, 1.5]$	$\pm[2.0, 0.9]$
Layers (Barrel)		1	3	3			
Wheels (ECAP)					2	1	1-3
Modules/Sensors		320	4420	3352	192	192	552
Total Si area	m^2	0.3	4.6	17.6	0.8	5.6	3.3
Read-out-Channels [1	10^{6}	224.5	1738	20.6	322.4	73.3	17.0
$\operatorname{pitch}^{r-\phi}$	um $]$	25	100	100	25	100	100
	um $]$	50	400	$50 \mathrm{k}^{ 2)}$	50	400	$10 {\rm k}^{ 1)}$
$\operatorname{Average} X_0/\Lambda_I$	[%]		7.2 / 2.2			2.2 / 0.7	

Reaching pitch^{$r-\phi$} when using two wafer layers rotated by 20 mrad is achievable.

FCC-eh – The Large Hadron-Electron Collider at the FCC

FCC-eh – The Large Hadron-Electron Collider at the FCC

Similar schemes in collision with protons of 7 TeV (LHeC), 13 TeV (HE-LHeC) and 50 TeV (FCC-eh)

Detector scales in size by up to $\ln (50/7) \sim 2$

Double Solenoid + Dipole

Even larger tracking region to retain 10 performance

R&D Needs for LHeC and FCC-eh

- Current (baseline) proposal based on detecor technologies for HL-LHC and FCC-hh ⇒ no (need for) dedicated R&D
- Detector performance/cost optimization will benefit singificantly from R&D in several areas:
 - High-resolution, low-power MAPS for vertex and inner tracking layers (low radiation envinronment)
 - Low-power & low(er) cost silicon sensors and module assembly for (large surface) outer tracker
 - Progress on ECal technologies, in particular remove need for cryogenics
 - R&D on thin magnet technologies

Final Remarks

The challanging detector requirements for the EIC, ALICE 3 and LHeC/FCC-eh call for a broad R&D program

Trackers

- CMOS Active Pixel Sensors for vertex and tracking layers: small pitch pixels, low-power, fast timing
- Low-cost, highly automated, module assembly, integration and test for large area trackers
- Advanced materials, mechanics and cooling
- Improved and novel micropattern gaseous detectors

Hadron and electon ID detectors

- TOF determination
- Many different applications of RICH technologies
- ⇒ All critically depend on R&D on photon sensors ⇒ key to ultimate performance and cost

High-precision calorimetry

- High-resolution ECal typically requires Lead Tungstate (PbWO₄) crystals
- Crystals are expensive, few vendors a QA issues, moderate production capacity, raw material shortage
- ⇒ R&D on scintillating glasses and other materials

Others: microelectronics, free-streaming readout, magnets, ...

BACKUP

EIC – radiation environment

Ionization Radiation dose and neutron fluency

20 GeV e-beam on 250 GeV p-beam

Max ionizing radiation dose: 2.5 kRad / year

Max fluency: ≤ 10¹⁰ neutrons/cm² per year

Source: EIC CDR Experimental Equipment, Nov 2020, Figures 8.6 and 8.7