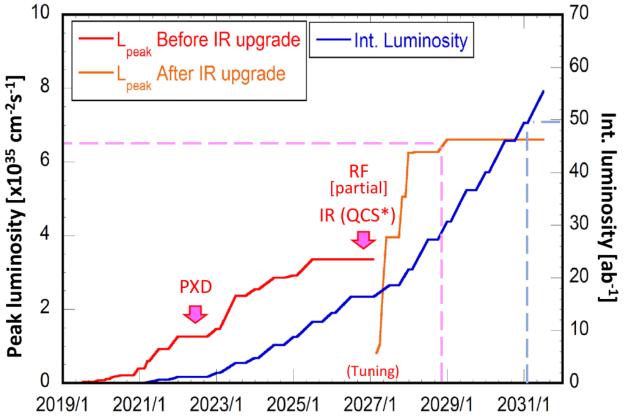

Detector R&D requirements for future circular high energy e⁺e⁻ machines

Mogens Dam Niels Bohr Institute, Copenhagen

ECFA Detector R&D Roadmap Input from Future Facilities

19th Feb., 2021

Outline


- 1. Belle II upgrades for high luminosity
- 2. Instrumentation for FCC-ee

Belle II Upgrades for High Luminosity *)

*) Slides prepared by Fransesco Forti Francesco.Forti@pi.infn.it

Belle II / SuperKEKB upgrade plans

- In 2020 a long term operation plan for the SuperKEKB accelerator has been proposed to MEXT
- Two time scales defined
- 2026: Final focus replacement to obtain full luminosity
- >2030: possible luminosity upgrades and/or polarization
- This defines the scales of the detector technology and R&D
 - Short time scale with small amount of R&D
 - Longer time scale with ultimate performance

Belle II Detector

K_L and muon detector: Resistive Plate Counter (barrel outer layers) Scintillator + WLSF + MPPC (end-caps, inner 2 barrel layers)

EM Calorimeter: CsI(Tl), waveform sampling

electron (7GeV)

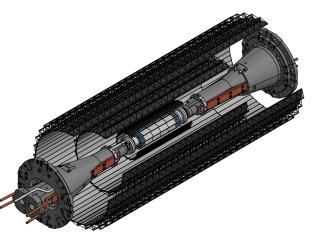
Beryllium beam pipe 2cm diameter

Vertex Detector 2 layers DEPFET + 4 layers DSSD

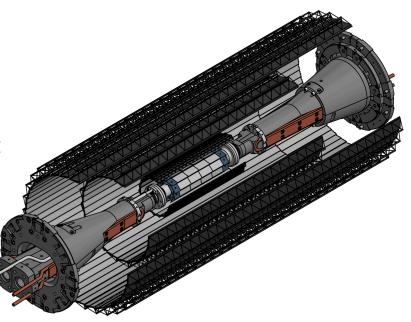
> Central Drift Chamber He(50%):C₂H₆(50%), Small cells, long lever arm, fast electronics

Particle Identification Time-of-Propagation counter (barrel) Prox. focusing Aerogel RICH (fwd)

positron (4GeV)

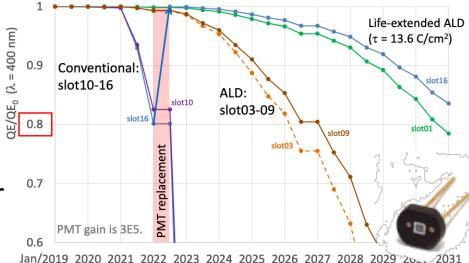

COMPUTING

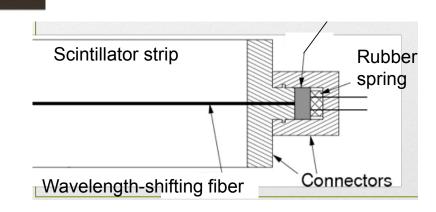
Issues and options for Belle II upgrades for high luminosity I


- Robustness aga many different
 - From interact
 Interactions i
 - Very complex
- Very low mater resolution (TF1

- Small pixel pitch: $30x30 \ \mu m^2$
- Fast chip integration time: 25 ns (100 ns total integration time window)
- Thin material: 0.1% X_0 inner, 0.3-0.5% X_0 outer
- Low and homogeneous power consumption: < 200 mW/cm²
- Radiation hard: 100 Mrad TID, $10^{14}\,n_{eq}\,cm^{-2}\,NIEL$ raction region

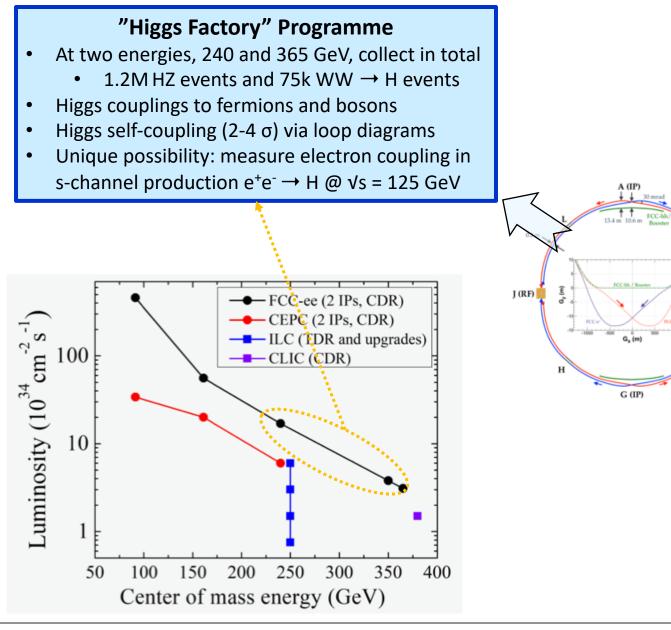
:ime


- Fast, high granularity, low mass replacement for current VXD: study of depleted CMOS MAPS; SOI sensors; thin strips
- Faster and more radiation tolerant electronics for CDC readout
- Replacement for drift chamber under study: CMOS MAPS for inner part; study of a TPC option
- New ideas: timing layers (TF3, TF7)
 - Possible use as TOF to improve PID performance
 - Provide track trigger in addition to or instead of CDC



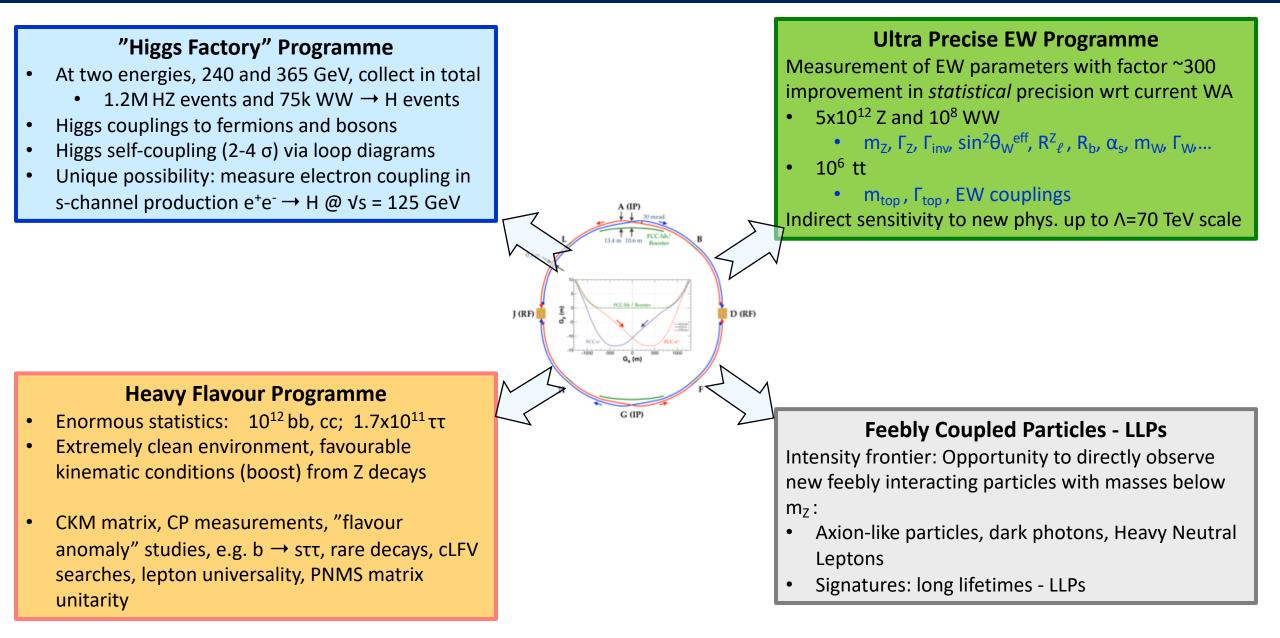
Issues and options for Belle II upgrades for high luminosity II

- Maintain large coverage high efficiency PID system (TF4)
 - Life-extended MCP-PMTs (Latest generation Atomic Layer Deposition)
 - Study of low noise single photon capable SiPMs
- Reduce pileup effects and maintain good calorimeter resolution (TF6)
 - Study of improved photo detector (APD) and/or pure CsI crystals.
 - Possibility of a crystal pre-shower
- Maintain muon efficiency; improve on KLong detection (TF4)
 - Replace aging RPCs with Scintillator+WLS+SiPM (already done for first layers)
 - Study of TOF option for Klong detection (need order of 100 ps resolution)

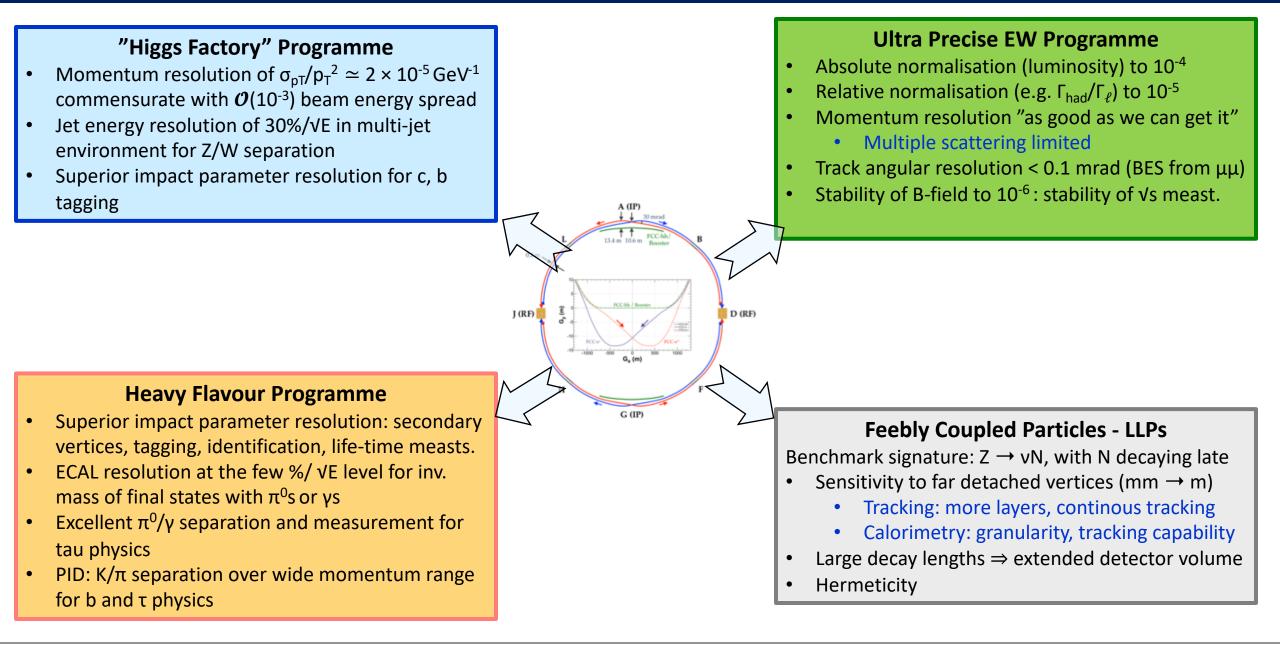

Projection of QE degradation

Instrumentation for FCC-ee

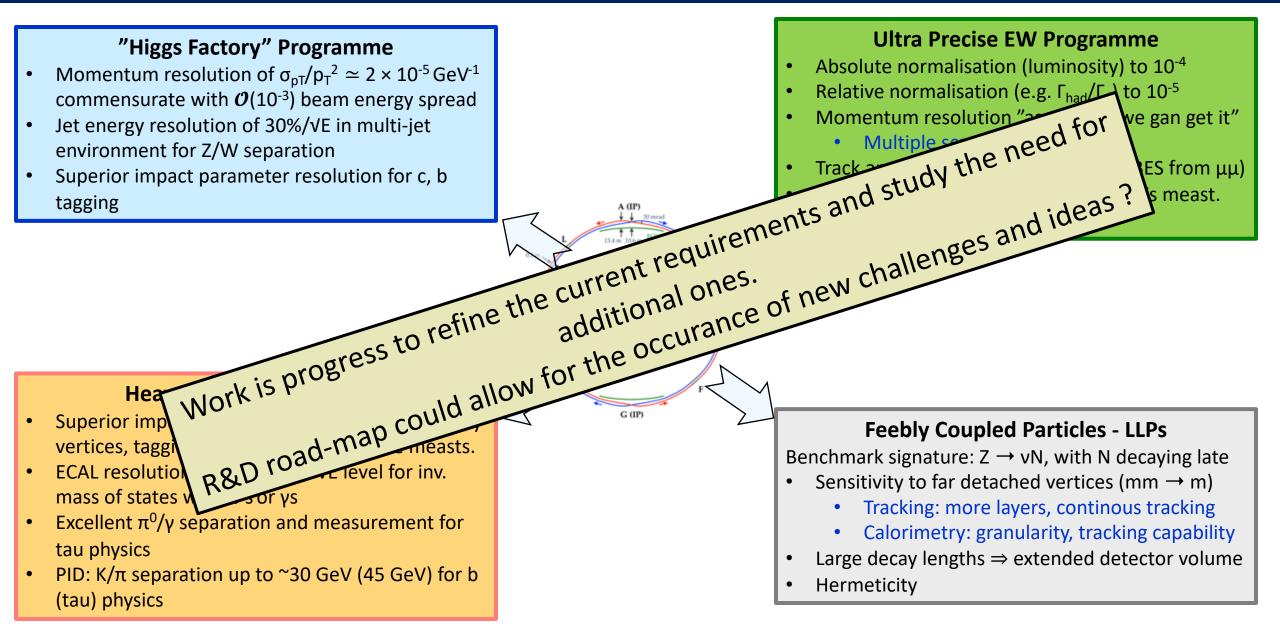
FCC-ee Physics Landscape (i)



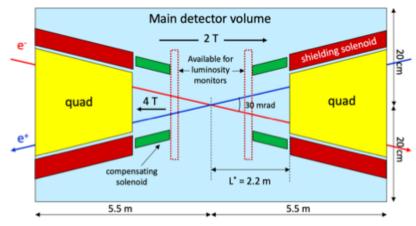
FCC-ee reminder


- 100 km circumference
- Separate e⁺, e⁻, and acceleration rings
- 30 mrad crossing angle
- Two (possibly four) interaction regions

D (RF)

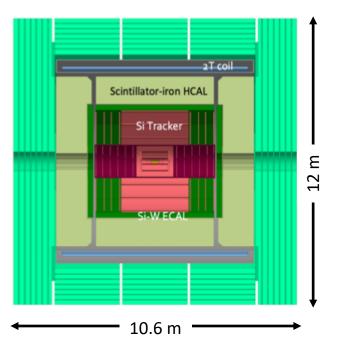

FCC-ee Physics Landscape (ii)

Detector Requirements in Brief


Detector Requirements in Brief

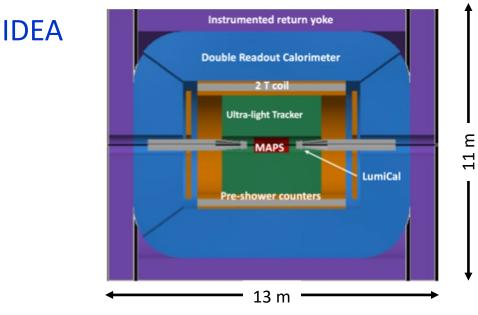
Experimental challenges

- 30 mrad beam crossing angle
 - Detector B-field limited to 2 Tesla at Z-peak operation
 - Very complex and tightly packed MDI (Machine Detector Interface)
- "Continuous" beams (no bunch trains); bunch spacing down to 20 ns
 Power management and cooling (no power pulsing)
- Extremely high luminosities
 - □ High statistical precision control of systematics down to 10⁻⁵ level
 - Online and offline handling of $\mathcal{O}(10^{13})$ events for precision physics: "Big Data"
- Physics events at up to 100 kHz
 - \square Fast detector response (\lesssim 1 μs) to minimise dead-time and event overlaps (pile-up)
 - Strong requirements on sub-detector front-end electronics and DAQ systems
 - * At the same time, keep low material budget: minimise mass of electronics, cables, cooling, ...
- More physics challenges
 - \square Luminosity measurement to $10^{\text{-4}}$ luminometer acceptance to 1 μm level
 - \square Detector acceptance to ~10⁻⁵ acceptance definition to few 10s of μm , hermeticity (no cracks!)
 - \Box Stability of momentum measurement stability of magnetic field wrt E_{cm} (10⁻⁶)
 - **□** Impact parameters, detached vertices Higgs physics (b/c/g jets); flavour and τ physics, life-time measurements
 - **D** Particle identification ($\pi/K/p$) without ruining detector hermeticity flavour and τ physics (and rare processes)



CDR: Two Complementary Detector Concepts

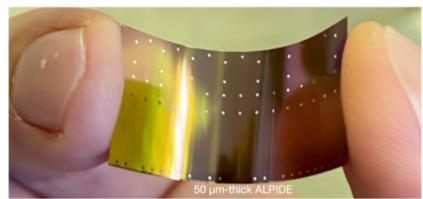
"Proof of principle concepts"


• Not necessarily matching (all) detector requirements, which are still being spelled out

- Based on CLIC detector design; profits from technology developments carried out for LCs (c.f. F.Simon's talk)
 - All silicon vertex detector and tracker
 - D-imaging highly-granular calorimeter system
 - Coil outside calorimeter system

https://arxiv.org/abs/1911.12230, https://arxiv.org/abs/1905.02520

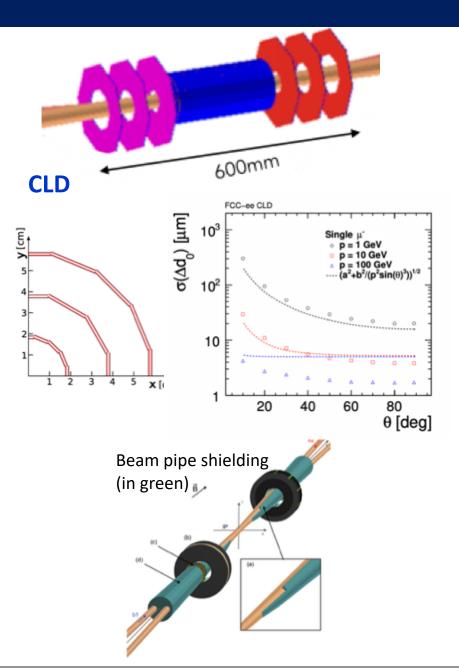
- New, innovative, possibly more cost-effective concept
 - Silicon vertex detector
 - Short-drift, ultra-light wire chamber
 - Dual-readout calorimeter
 - □ Thin and light solenoid coil inside calorimeter system


https://pos.sissa.it/390/

Vertex Detector

• Beam pipe radius:

\Box 15 mm base line \rightarrow 10 mm

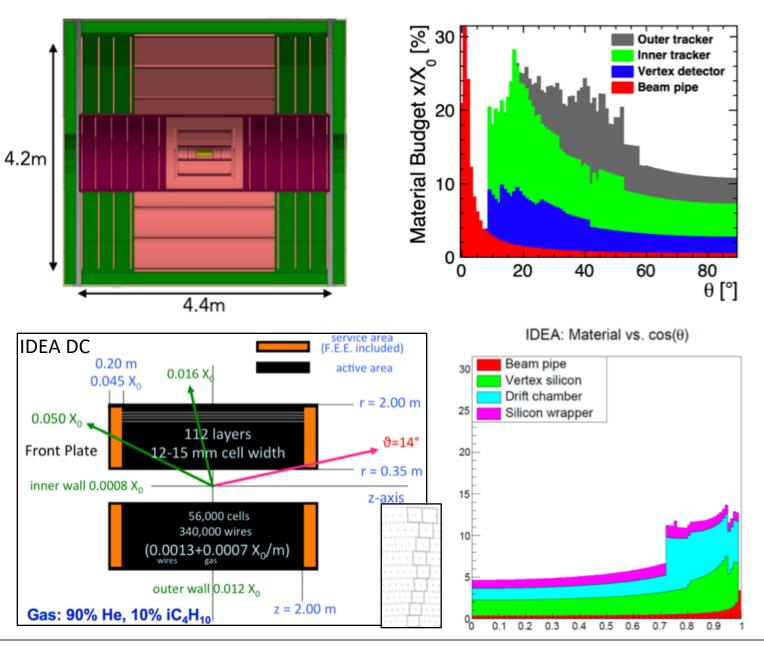

- Thanks to collimators and effective beam-pipe shielding, beam backgrounds are in general negligible
 - \Box Example: max rate of 10⁻⁵ hits / mm² / BX @ \sqrt{s} = 91.2 GeV
 - This and other simulation results from CLD full simulation
- Following ongoing rapid technological development
 Lighter, more precise, closer, less power

Courtesy of Magnus Mager, CERN

• Extreme alignment-precision needs for life-time measurements

 \square Ex.: τ lifetime to $\lesssim 10^{\text{-4.}} \text{relative precision}$ $\Rightarrow \ \lesssim 0.2 \ \mu\text{m}$ on flight distance

Tracking

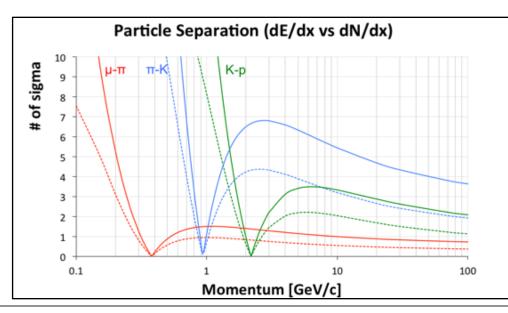

Two solutions under study

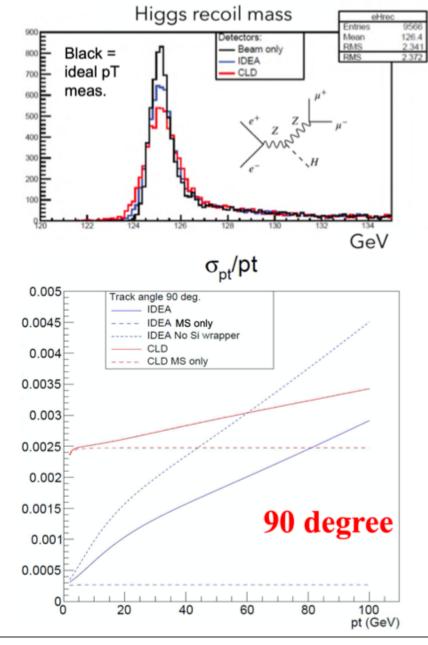
CLD: All silicon pixel (innermost) + strips
 Inner: 3 (7) barrel (fwd) layers (1% X₀ each)
 Outer: 3 (4) barrel (fwd) layers (1% X₀ each)
 Separated by support tube (2.5% X₀)

- ♦ IDEA: Extremely transparent Drift Chamber
 - □ GAS: 90% He 10% iC₄H₁₀
 - □ Radius 0.35 2.00 m
 - □ Total thickness: 1.6% of X₀ at 90°
 - Tungsten wires dominant contribution
 - Full system includes Si VXTand Si "wrapper"

What about a TPC?

- Very high physics rate (70 kHz)
- B field limited to 2 Tesla
- Considered for CEPC, but having difficulties...




Drift Chamber

- For Higgs recoil mass analysis, both proposed tracker designs match well resolution from beam energy spread
- However, in general, tracks have rather low momenta ($p_T \lesssim 50$ GeV)

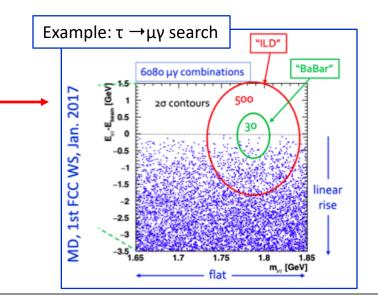
Transparency more relevant than asymptotic resolution

- Drift chamber (gaseous tracker) advantages
 - Extremely transparent: minimal multiple scattering and secondary interactions
 - **□** Continous tracking: reconstruction of far-detached vertices (K⁰_S, Λ, BSM LLPs)
 - □ Particle separation via dE/dx or cluster counting (dN/dx)
 - & dE/dx much exploited in LEP analyses

ECFA Detector R&D Roadmap Input Session

Calorimetry

Several technologies being considered

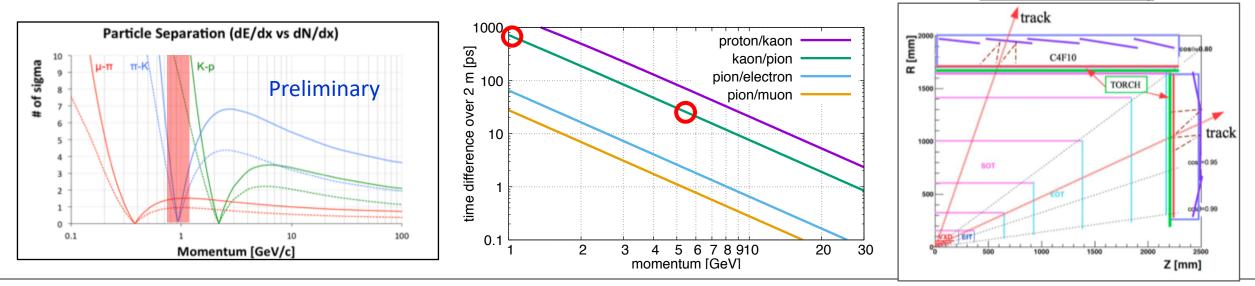

Technology	ECAL	HCAL
CLD / CALICE-like	W/Si W/scint + SiPM	Steel/scint + SiPM Steel/glass RPC
IDEA / Dual Readout	Brass (lead, iron) / parallel scint + PMMA (\check{C}) fibres, SiPM	
Noble Liquid	Fine grained LAr (LKr) / Pb (W)	CALICE-like ?
Crystals	Finely segmented crystals (possibly DR)	Dual Readout fiber?

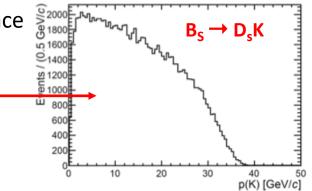
• Jet energy and angular resolutions via Particle Flow algorithm

- Possibibly augmented via Dual Readout
- Fine segmentation for PF algorithm and powerful γ/π^0 separation and measurement
- In particular for heavy flavour programme, superior ECAL resolution needed

 $\Box 15\%/VE \rightarrow 8\%/VE \rightarrow 3\%/VE$

- Other concerns
 - Operational stability, cost, ...
- Optimisation ongoing for all technologies
 - □ Choice of materials, segmentation, read-out, ...

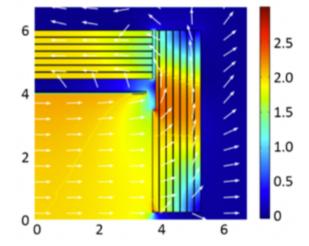



Particle Identification

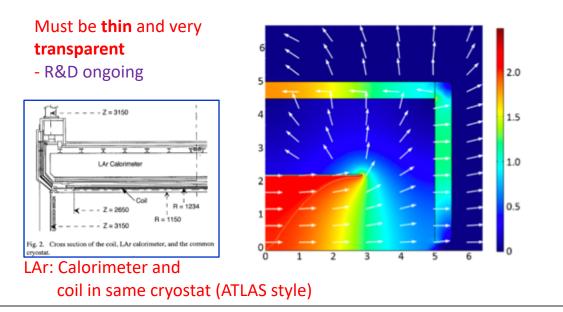
PID capabilities across a wide momentum range is essential for flavour studies and will enhance overall physics reach

- \square Example: important mode for CP-violation studies $B^0_s \rightarrow D^{\pm}_s K^{\mp}$
 - * Require K/ π separation over wide momentum range to suppress same topology $B^0_S \rightarrow D^{\pm}_S \pi^{\mp}$
- IDEA drift chamber promises >3 σ π/K separation all the way up to 100 GeV
 - Experimental validation needed of dN/dx method in relativistic rise region
 - \square Cross-over window at 1 GeV, can be alleviated by unchallenging TOF measurement of $\delta T \lesssim 0.5$ ns
- TOF alone δ T of ~10 ps over 2 m (LGAD, TORCH) could give $3\sigma \pi/K$ separation up to ~5 GeV
- Alternative approaches, in particular (gaseous) RICH counters to be investigated

□ R&D needed to develop RICH solution compatible with detector/tracker space requirements

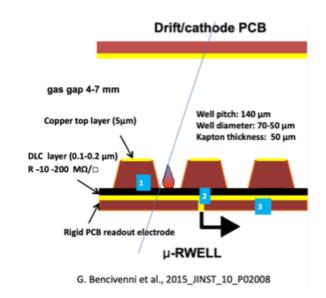

CEPC detector study

ECFA Detector R&D Roadmap Input Session


Solenoid Magnet and Muon System

Large solenoid outside calorimeter system (CLD)

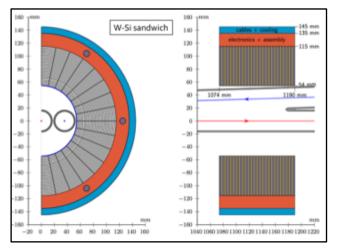
CMS-like dimensions



Thin solenoid inside calorimeter system (IDEA & LAr)

Muon system in instrumented return yoke

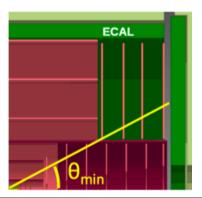
- □ 3-7 layers being considered: 3000-6000 m²
- Proposed technologies
 - RPC (30 × 30 mm² cells)
 - Crossed scintillator bars
 - μRWell chambers (1.5 × 500 mm² cells)
 - Also for IDEA pre-shower detector
 - Ongoing R&D work



Normalisation Issues

Ambitious goals:

- Absolute luminosity measurement to $\lesssim 10^{\text{-4}}$
- Relative luminosity (energy-to-energy point) to $\lesssim 10^{\text{-5}}$
- Inter-channel normalisation (e.g. $\mu\mu/multi$ -hadronic) to ${\lesssim}10^{\text{-5}}$


Luminosity Monitors (low angle Bhabha)

- Many R&D/engineering challenges
 - Precision on acceptance boundaries to $O(1 \ \mu m)$!
 - Mechanical assembly, metrology, alignment
 - □ Physics rate of **O**(100 kHz)
 - □ Readout at 50 MHz BX rate ?
 - Power management / cooling
 - Support / integration in crowded and complex MDI area

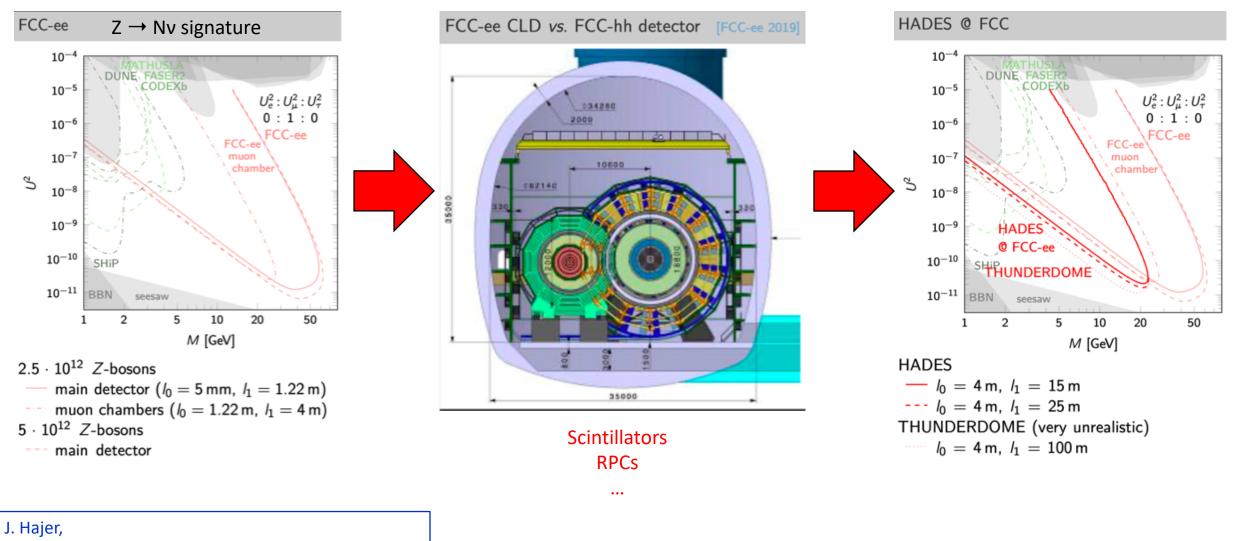
Complementary lumi process: large angle $e^+e^- \rightarrow \gamma\gamma$ $\Box \ 10^{-4} \Rightarrow$ control of acceptance boundary $\delta\theta_{min}$ to $\mathcal{O}(50 \ \mu rad)$ Acceptance of $Z \rightarrow \ell \ell$ to 10^{-5} \Box control of acceptance boundary $\delta\theta_{min}$ to $\mathcal{O}(50 \ \mu rad)$

- No holes or cracks
- Possible implementation: Precisely machined pre-shower device in front of forward calorimeter
 - Note 1: IDEA concept already includes pre-shower + Si wrapper
 - $\, \square \,$ Note 2: CM and detector sytems differ by a $\beta {=} 0.015$ transverse boost

Readout, DAQ, Data Handling

- In particular at Z-peak, challenging conditions
 - 50 MHz BX rate
 - □ 70 kHz Z rate + ~100 kHz LumiCal rate
 - □ Absolute normalisation goal 10⁻⁴
 - ✤ In comparison, "pileup" parameter for LumiCal is ~2x10⁻³
- Different sub-detectors tend to prefer different integration times
 - □ Silicon VTX/tracker sensors: $\mathcal{O}(\mu s)$ [also to save power]
 - Time-stamping probably needed
 - □ LumiCal: Probably preferential at ~BX frequency (20 ns)
 - * Avoid additional event pileup
- How to organize readout?
 - □ Need a "hardware" trigger with latency buffering a la LHC
 - Which detector element provides the trigger ?
 - Free streaming of self-triggering sub-detectors, event building based on precise timing information
 - Need careful treatment of relative normalisation of subdetectors

 Need to consider DAQ issues (trigger vs. streaming) when designing detectors and their readout


◆ Off-line handling of 𝒪(10¹³) events for precision physics
 □ ... and Monte Carlo

Possibility: Very Large Tracking Volume for LLPs

FCC-ee "standard" detector

Half a magnitude sensitivity gain in U^2

4th FCC Physics and Experiments workshop, Nov. 2020

Selection of R&D Issues

High duty-cycle detectors [TF7, TF8]

a) Low-power readout electronics and low-mass cooling

Silicon sensors – VTX, tracker, calorimeters [TF3]

b) High spatial resolution (3-5 μm), timing (at least 20 ns for BX assignment), low material budget, low power consumption

Drift chamber [TF1]

- c) Prototypes: full length (few cells) to verify wire stability and electronics issues; portions of full-scale end-plate
- d) Investigate possibility to save material going from metal wires to metal-coated carbon monofilaments
 - Wire production line need to be engineered
- e) Experimental verification of dN/dx method for PID
 - * Need test beams, e, μ, π, K, p in range $\gtrsim 100 \; \text{MeV}$ to 50 GeV

Calorimetry [TF6, TF4, TF7]

- f) Optimisation for each technology including choice of materials and segmentation
- g) Dual Readout: SiPM/FE electronix, had-shower-size prototype

Coil design/placement [TF8]

h) Quantititive study of impact of "early" coil on phys. perf.

PID (other than specific ionisation) [TF4, TF3]

i) Precise timing, gaseous RICH

Muon system [TF1, TF4]

j) Technology choice for very large area detectors
 * RPC, scintillator, μRWell,...

Readout & DAQ [TF7, TF8]

- k) Design of DAQ architecture: triggered or free streaming
- I) Sub-detector readout to be designed correspondingly

Normalisation issues [TF6, TF7]

- m) LumiCal: micron level mechanical precision; fast, low-power read-out electronics
- n) Definition of geometrical acceptance of main detector to 10s
 of μm precision (dedicated low-angle (pre-shower) device?)

Large detector volume for LLPs [TF1, TF4, TF6]

- o) Optimization of calorimeter and muon system for late decaying particles
- p) Possibility of large instrumented decay volume in surrounding cavern

References

- Detector requiremets for FCC-ee, P. Azzi & E. Perez, Presentation at 4th FCC Physics and Experiments Workshop
- ♦ CLD A Detector Concept for FCC-ee, N. Bacchetta et al., [1911.12230]
- ◆ Detector Technologies for CLIC, A.C. Abusleme Hoffman et al., [1905.02520]
- ◆ IDEA General: A detector concept proposal for a circular e⁺e⁻ collider, F. Bedeschi, <u>https://pos.sissa.it/390/819/pdf</u>
- IDEA Drift Chamber: A proposal of a drift chamber for the IDEA experiment for a future e⁺e⁻ collider, G. Tassielli, <u>https://pos.sissa.it/390/877/</u> (To be published)