Astro-particle neutrino experiments KM3NeT, IceCube, GVD (Baikal)

ECFA – 22nd of February 2021 Maarten de Jong

Disclaimer:

- Numbers are indicative and should be taken with a pinch of salt;
- Visions are meant for discussion and may be biased;

The case for TeV-PeV neutrino astronomy

The case for TeV-PeV neutrino astronomy

Neutrino propagation

$$\begin{pmatrix} v_e \\ v_{\mu} \\ v_{\tau} \end{pmatrix} = U \times \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} \qquad \text{mass states}$$

$$=$$

$$\text{"what you get"}$$

mass states

Majorana

CP-violation

$$U = \begin{bmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{bmatrix} \begin{bmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{bmatrix} \begin{bmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & e^{i\alpha_1/2} & 0 \\ 0 & 0 & e^{i\alpha_2/2} \end{bmatrix}$$

$$c_{ij} = \cos\theta_{ij} \quad s_{ij} = \sin\theta_{ij}$$

Test of fundamental physics

Neutrino telescope

Cherenkov (1934): H₂O as detector

Markov (1960): H_2O as target

- target mass
 overcome small x-section
- muon range good angular resolution
- 3. transparency sparse detector

Neutrino detection

Neutrino detector

Artic ice

deep sea

Global Neutrino Network

ANTARES

deep water 0.02 km^3 2007 –

KM3NeT

KM3NeT

deep water 1++ km³ construction

GVD (Baikal)

deep water $\sim 1 \text{ km}^3$ half-complete

<u>IceCube</u>

deep ice $1 \, \text{km}^3$ 2011 –

Neutrino telescopes

	IceCube	GVD	Antares	KM3NeT
Status	completed 2011	under construction	completed 2007	under construction
Location	South Pole	Lake Baikal	Mediterranean Sea	
Medium	ice	lake	sea	
Light transmission	$\lambda_s < \lambda_{abs}$	$\lambda_s \gg \lambda_{abs}$	$\lambda_s \gg \lambda_{abs}$	
Resolution $\begin{array}{c} \nu_{\mu} \\ \nu_{e} \end{array}$	0.4 deg 10 deg	0.5 deg 2 deg	0.4 deg 2 deg	0.05 deg 1.5 deg
Noise	extremely low	medium	medium	
PMT size (QE)	10" (25%)	10" (35%)	10" (20%)	3" (30%)

Photo-sensors: $10'' \rightarrow 3''$ PMTs

timing

• QE

collection efficiency

photon counting purity

• price/cm²

≤ 2.5 ns

≥ 25–30%

≥ 90%

100% (by hits, up to 7)

≤ 10" PMT

more pixels

=

better physics

ETEL D792

Hamamatsu R12199

HZC XP53B20

Front-end electronics

IceCube

KM3NeT

custom low-power HV, TDC and ADC

Housing

commercial floatation devices

Cabling

IceCube

commercial

KM3NeT

custom → commercial

Civil engineering (1/3)

IceCube:

- hole drilling in ice (custom)
- shore station (custom)

Civil engineering (2/3)

GVD (Baikal):

- deployment from ice surface (custom)
- shore station (commercial)

Civil engineering (3/3)

KM3NeT:

- deployment with surface vessel (commercial)
- shore station (commercial)

Clock – DAQ – Computing

	IceCube
clock	custom
data transfer	wire
Tier-0	custom
Tier-1+2	?

GVD, Baikal
custom + White-Rabbit
wire
custom
CPU (450)

KM3NeT
White-Rabbit
fibre
CPU (100)
CPU (500)

APPEC roadmap (to be published)

"Computing resources are relatively modest ..."

"Filtering of the rare neutrino signal from the high background ... poses challenges"

"... machine learning and use of GPUs can improve the science output"

Present

- Era of multi-messenger astronomy
 - EM-radiation cosmic rays neutrinos gravitational waves
 - alerts (from astronomy)
 - point telescopes world-wide to astrophysical event in real time
- Fundamental particle physics with atmospheric and cosmic neutrinos
 - neutrino mass ordering
 - $-v_{\tau}$ appearance
 - sterile neutrinos, Lorentz invariance, non-standard interactions, ...

Future (1/2)

- Benefit from serendipities
 - Earth and sea sciences
 - climate change
 - marine life (e.g. noise pollution)
 - tsunami warnings

- Explore alternative technologies for EeV neutrino detection
 - radio detection (e.g. GRAND, RNO)
 - acoustics neutrino detection (e.g. KM3NeT)

Future (2/2)

- Make cosmic-ray detector on bottom of sea
 - 2D-array à la KM3NeT "Pierre Auger in the North"
 - involvement of offshore industry

- Make long baseline neutrino experiment
 - $-\delta_{CP}$ measurement with [tagged] neutrino beam from Protvino to KM3NeT
 - ps-tracking detectors in decay tunnel

Summary & Outlook

- Technology for 10¹² kg neutrino detectors now is affordable
 - standardise maximise capitalise
 - price photo-sensors important (high QE low dark count)
 - costs civil engineering significant but much less than excavation
- Global Neutrino Network (GNN)
 - [European] astro-particle neutrino experiments could benefit from interaction with particle physics centres, in particular CERN
 - know-how, reviews, collaboration
- Lone baseline neutrino and/or cosmic-ray experiments
 - use & push technology to limit

