Distinguishing Vector-Boson Fusion Signatures with Convolutional Neural Networks: Invisible Higgs Decay

Eur. Phys. J. C 80, 1055 (2020) (with A. Bhardwaj, P. Konar, A. K. Nayak)

Physical Research Laboratory, Ahmedabad(India)

IML Machine Learning Working Group February 16, 2021

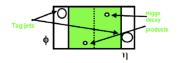
Vishal S. Ngairangbam

Outline

Motivation: Looking at VBF Higgs through a CNN

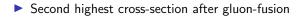
Invisible Higgs search at LHC

Data-representation: high-level and low-level features

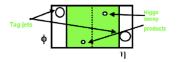

Preprocessing

Network Performance

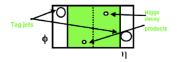
Result: Bounds on invisible branching ratio of Higgs


Back-up

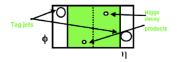
- t-channel production of color-singlet particles via fusion of two vector-bosons
 - No central jet activity
 - Large rapidity gap between two jets
 - Large invariant mass of the two jet system



- Decay products at the central region
- Higher order QCD always below 10% very stable with scale uncertainty
- Very important for BSM searches of color singlet particles.
- Dominant production channel for heavy Higgs at hadron colliders
- Central-jet veto: viable to search for lighter Higgs masses


- t-channel production of color-singlet particles via fusion of two vector-bosons
 - No central jet activity
 - Large rapidity gap between two jets
 - Large invariant mass of the two jet system
 - Decay products at the central region
- VBF production of $m_h = 125$ GeV Higgs

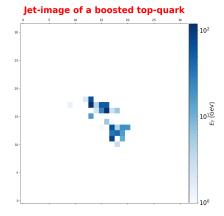
- Very clean channel for non-hadronic decay of the Higgs
- Most sensitive channel for searching invisible decay of Higgs (Important in many BSM scenario)



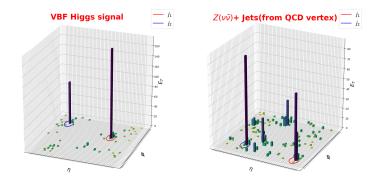
- t-channel production of color-singlet particles via fusion of two vector-bosons
 - No central jet activity
 - Large rapidity gap between two jets
 - Large invariant mass of the two jet system
 - Decay products at the central region

Collider bounds on invisible branching ratio of Higgs much higher than in SM!!

- t-channel production of color-singlet particles via fusion of two vector-bosons
 - No central jet activity
 - Large rapidity gap between two jets
 - Large invariant mass of the two jet system
 - Decay products at the central region

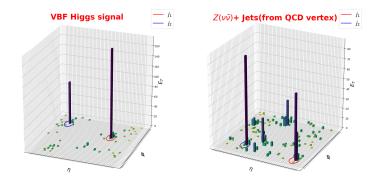

Collider bounds on invisible branching ratio of Higgs much higher than in SM!!

New techniques to reduce the upper limit: Deep learning??


CNNs and jet-images: why do they work?

- Efficiently distinguishes large radius QCD jets from decays of boosted heavy particles (t, W[±]/Z⁰/h⁰)
- Works with data which have an underlying Euclidean-geometry
- Jet-substructure variables are mostly functions of the Euclidean <u>distance</u> $\Delta R_{ij} = \sqrt{\Delta \eta_{ij}^2 + \Delta \phi_{ij}^2}$ in the (η, ϕ) plane, for instance:

$$\mathsf{ECF}(2,\beta) = \sum_{i,j < i \in J} p_T^i p_T^j (\Delta R_{ij})^{\beta}$$


Tower-Image

Salient underlying event structure in Vector-boson fusion(VBF): no color exchanged at LO

Can CNNs leverage information from the full calorimeter tower?

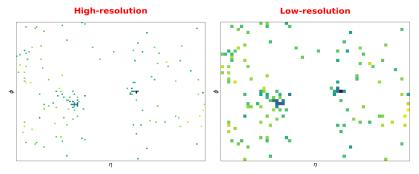
Tower-Image

Salient underlying event structure in Vector-boson fusion(VBF): no color exchanged at LO

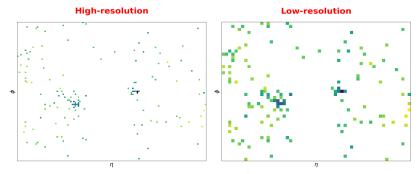
Can CNNs leverage information from the full calorimeter tower? Turns out, we can!

Search for Invisible decays of Higgs at LHC

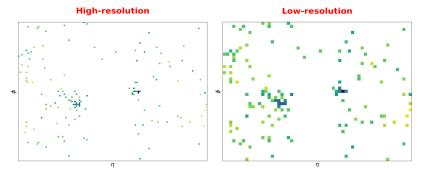
- \blacktriangleright Higgs does not couple to ν in SM, couples to dark-matter in many BSM models
- Most recent ATLAS preliminary result^a puts upper limit on B.R(h→inv) < 0.13 at 95% confidence level with L = 140 fb⁻¹.
- Reproduced the shape-analysis of CMS result^b in our setting, for better comparison of increased sensitivity
 - ► deliberately weaken cuts in $|\Delta \eta_{jj}|$ and m_{jj} ⇒Two signals: S_{EW} (VBF) and S_{QCD} (Gluon-fusion)
 - We consider the following major backgrounds:
 - \blacktriangleright Z_{QCD}: Z($\nu\bar{\nu}$) + jets
 - W_{QCD} : $W^{\pm}(I^{\pm}\nu) + jets$
 - Z_{EW} : VBF production of $Z(\nu \bar{\nu}) + 2$ jets
 - W_{EW} :VBF production of $W^{\pm}(I^{\pm}\nu) + 2$ jets

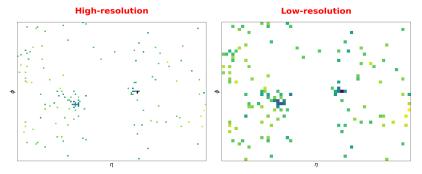

^aATLAS-CONF-2020-008 ^bPhys. Lett. B 793 (2019) 520 [1809.05937]

Pre-selection cuts

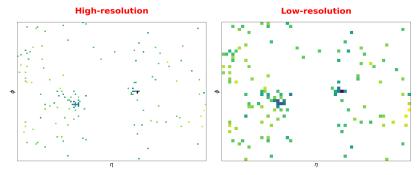

▶ VBF Jet tag: At least two jets with leading(sub-leading) jet $p_T > 80$ (40) GeV with $|\eta| < 4.7$. At least one of the jets to have $|\eta_{j_i}| < 3$.

 $\eta_{j_1} \; \eta_{j_2} < 0 \ , \ |\Delta \phi_{jj}| < 1.5 \ , \ |\Delta \eta_{jj}| > 1 \ , \ m_{jj} > 200 \; {
m GeV}$

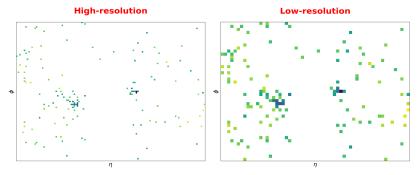

- Lepton-veto: No electron(muon) with p_T > 10 GeV in the central region, |η| < 2.5(2.4).</p>
- ▶ **Photon-veto:** No photon with $p_T > 15$ GeV in the central region, $|\eta| < 2.5$
- ▶ τ and b-veto: no tau-tagged jets in $|\eta| < 2.3$ with $p_T > 18$ GeV, and no b-tagged jets in $|\eta| < 2.5$ with $p_T > 20$ GeV.
- Missing E_T(MET): MET > 200 GeV (250 GeV for CMS shape-analysis)
- MET jet alignment: min(Δφ(p_T^{MET}, p_T^j)) > 0.5 for upto four leading jets with p_T > 30 GeV with |η| < 4.7.</p>


 Pixel wise calorimeter energy deposits (*E_T*) converted into pictorial description like 'tower-images' as input to Convolutional Neural Networks

 Different resolution of calorimeter towers in central and forward regions



▶ **Bin-size**: High-resolution(HR) 0.08×0.08 and a low-resolution(LR): 0.17×0.17 , $\eta \in (-5, 5)$ and $\phi \in (-\pi, \pi)$



▶ **Bin-size**: High-resolution(HR) 0.08×0.08 and a low-resolution(LR): 0.17×0.17 , $\eta \in (-5,5)$ and $\phi \in (-\pi, \pi)$

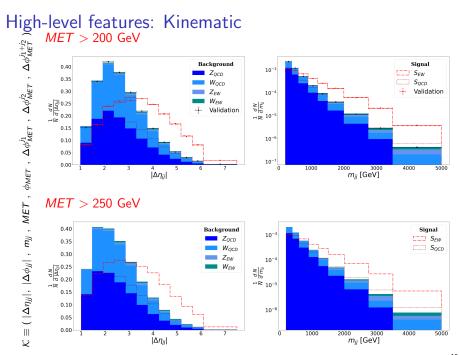
 \blacktriangleright Periodic in ϕ

- ▶ **Bin-size**: High-resolution(HR) 0.08×0.08 and a low-resolution(LR): 0.17×0.17 , $\eta \in (-5, 5)$ and $\phi \in (-\pi, \pi)$
- Padding: padded at each \u03c6-boundary with rows from the opposite boundary.

- ▶ **Bin-size**: High-resolution(HR) 0.08×0.08 and a low-resolution(LR): 0.17×0.17 , $\eta \in (-5, 5)$ and $\phi \in (-\pi, \pi)$
- Padding: padded at each \u03c6-boundary with rows from the opposite boundary.
- ▶ **Size** LR: 59 × 45, and HR: 125 × 95.

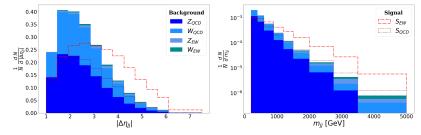
High-level features: Event kinematics and QCD radiation

Kinematic: Information about the event-kinematics from reconstructed objects


$$\mathcal{K} \equiv \left(\ |\Delta \eta_{jj}|, \ |\Delta \phi_{jj}| \ , \ m_{jj} \ , \ MET \ , \ \phi_{MET} \ , \ \Delta \phi_{MET}^{j_1} \ , \ \Delta \phi_{MET}^{j_2} \ , \ \Delta \phi_{MET}^{j_1+j_2} \) \right)$$

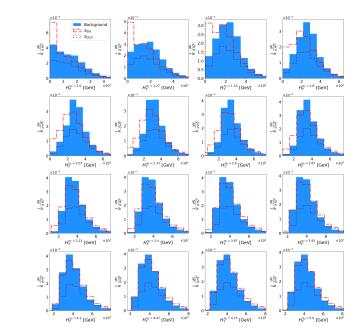
Radiative: Contains information about the QCD radiation pattern.

$$\mathcal{R}\equiv \left(H_T^{\eta_{\mathcal{C}}}|\eta_{\mathcal{C}}\in\mathcal{E}
ight) \ , \ \ H_T^{\eta_{\mathcal{C}}}=\sum_{\eta<|\eta_{\mathcal{C}}|}E_T \ \ .$$

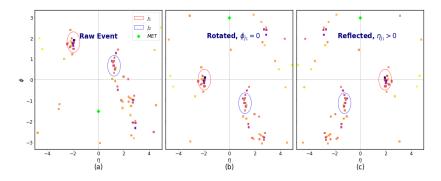

 \mathcal{E} : set of chosen η_C 's. Vary η_C uniformly in the interval [1,5] to get 16 $H_T^{\eta_C}$ variables.

Combined high-level feature space: H

2

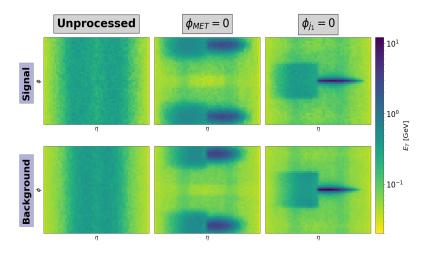

High-level features: QCD-Radiative

 $=\sum_{\eta<|\eta_c|}E_T$


 $H_T^{\eta c}$

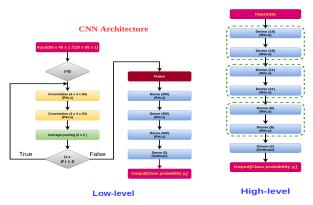
•

 $\mathcal{R} \equiv (H_T^{\eta_{\mathcal{C}}} | \eta_{\mathcal{C}} \in \mathcal{E})$

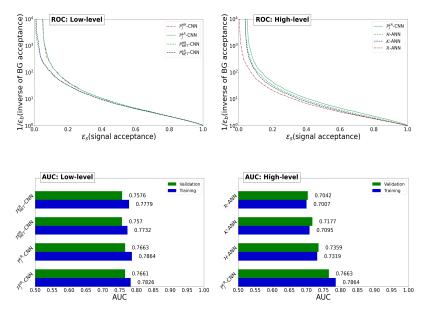


Low-level: Event-preprocessing

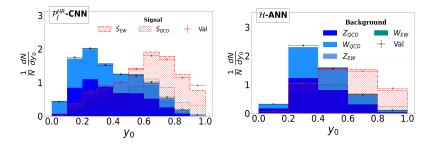
- ► Rotate along z-axis such that φ₀ = 0. Two instances of φ₀ ∈ {φ_{MET}, φ_{j1}}.
- Reflect along the xy-plane, such that the leading jet's η is always positive.
- After binning (E_T) and padding in LR and HR : \mathcal{P}_{MET}^{LR} , \mathcal{P}_{MET}^{HR} , \mathcal{P}_{J}^{LR} and \mathcal{P}_{J}^{HR}


Low-level: Event-preprocessing

Averaged Images

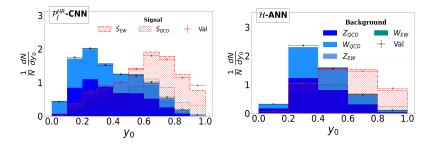

Brief detail of networks

*R***-ANN** Architecture



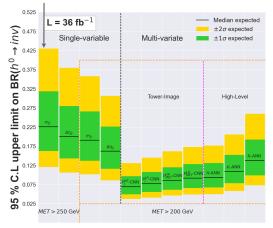
- After training for 20-1000 epochs, best performing network on the validation data choosen (for each of the 7 networks).
- ANN architectures are inspired by the information bottleneck principle, closely related to coarse-graining in RG evolution.

Network Performance


Network Performance: Channel-wise outputs

 Harder to distinguish S_{QCD} from the QCD dominated (~ 95%) background class (significant S_{QCD} contamination in traditional analysis too)

For the CNN, W_{QCD} dominates over Z_{QCD} in the first bin??


Network Performance: Channel-wise outputs

- Harder to distinguish S_{QCD} from the QCD dominated (~ 95%) background class (significant S_{QCD} contamination in traditional analysis too)
- For the CNN, W_{QCD} dominates over Z_{QCD} in the first bin?? ⇒ Presence of calorimeter deposits of lepton in regions |η| > 2.5 or in the central regions when it is misidentified (including τ[±]).

Bounds on $B.R(h^0 \rightarrow inv)$

Reproduced CMS result at 36 fb⁻¹ (actual : BR < 0.25)

Expected 95% C.L median upper limit on the invisible branching ratio of SM Higgs with one and two sigma sidebands.

Bounds on B.R($h^0 \rightarrow inv$)

	,		Expected median		
SI.No	Name	Description	upper-limit on ${\sf B.R}(h^0 o {\sf inv})$		
			$L=36~fb^{-1}$	$L=140~fb^{-1}$	$L=300~fb^{-1}$
1.	$m_{jj}(MET > 250 \text{ GeV})$	reproduced CMS shape analysis	$0.226\substack{+0.093\\-0.063}$	$0.165\substack{+0.082\\-0.056}$	$0.130\substack{+0.089\\-0.027}$
2.	$ \Delta\eta_{jj} $ (<i>MET</i> > 250 GeV)	$ \Delta\eta_{jj} $ analysis with CMS shape-cuts	$0.200\substack{+0.080\\-0.056}$	$0.128\substack{+0.050\\-0.036}$	$0.106\substack{+0.041\\-0.025}$
3.	$m_{jj}(MET > 200 { m GeV})$	m _{jj} shape analysis with weaker cut	$0.191\substack{+0.075\\-0.053}$	$0.116\substack{+0.071 \\ -0.036}$	$0.101\substack{+0.037\\-0.045}$
4.	$ \Delta\eta_{jj} $ (<i>MET</i> > 200 GeV)	$ \Delta\eta_{jj} $ analysis with weaker cut	$0.162\substack{+0.065\\-0.045}$	$0.105\substack{+0.042\\-0.029}$	$0.087\substack{+0.034\\-0.025}$
5.	\mathcal{P}^{LR}_J -CNN	Low-Resolution, $\phi_0 = \phi_{j_1}$	$0.078\substack{+0.030\\-0.022}$	$0.051\substack{+0.020\\-0.014}$	$0.045\substack{+0.017\\-0.013}$
6.	\mathcal{P}^{HR}_{J} -CNN	High-Resolution, $\phi_0 = \phi_{j_1}$	$0.070\substack{+0.027\\-0.020}$	$0.043\substack{+0.017\\-0.012}$	$0.035\substack{+0.013\\-0.010}$
7.	\mathcal{P}_{MET}^{LR} -CNN	Low-Resolution, $\phi_{\rm 0}=\phi_{\rm MET}$	$0.092\substack{+0.037\\-0.025}$	$0.062\substack{+0.024\\-0.017}$	$0.053\substack{+0.023\\-0.014}$
8.	\mathcal{P}_{MET}^{HR} -CNN	High-Resolution, $\phi_0 = \phi_{MET}$	$0.086\substack{+0.035\\-0.024}$	$0.058\substack{+0.023\\-0.016}$	$0.051\substack{+0.020\\-0.014}$
9.	K-ANN	8 kinematic-variables	$0.101\substack{+0.052\\-0.022}$	$0.075\substack{+0.029\\-0.021}$	$0.063\substack{+0.027\\-0.017}$
10.	<i>R</i> -ANN	16 radiative $H_T^{\eta_c}$ variables	$0.138\substack{+0.055\\-0.039}$	$0.094\substack{+0.036\\-0.027}$	$0.079\substack{+0.032\\-0.022}$
11.	$\mathcal{H} ext{-}ANN$	Combination of ${\mathcal K}$ and ${\mathcal R}$ variables	$0.094\substack{+0.038\\-0.026}$	$0.065\substack{+0.026\\-0.018}$	$0.057\substack{+0.022\\-0.015}$

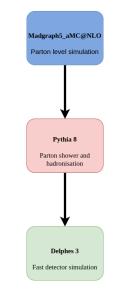
factor of three improvement, utilising the same amount of data.

It can constrain many different BSM models severely.

Bounds on B.R($h^0 \rightarrow inv$)

	,		Expected median		
SI.No	Name	Description	upper-limit on ${\sf B.R}(h^0 o {\sf inv})$		
			$L=36~fb^{-1}$	$L=140~fb^{-1}$	$L=300~fb^{-1}$
1.	$m_{jj}(MET > 250 \text{ GeV})$	reproduced CMS shape analysis	$0.226\substack{+0.093\\-0.063}$	$0.165\substack{+0.082\\-0.056}$	$0.130\substack{+0.089\\-0.027}$
2.	$ \Delta\eta_{jj} $ (<i>MET</i> > 250 GeV)	$ \Delta\eta_{jj} $ analysis with CMS shape-cuts	$0.200\substack{+0.080\\-0.056}$	$0.128\substack{+0.050\\-0.036}$	$0.106\substack{+0.041\\-0.025}$
3.	$m_{jj}(MET > 200 { m GeV})$	m _{jj} shape analysis with weaker cut	$0.191\substack{+0.075\\-0.053}$	$0.116\substack{+0.071 \\ -0.036}$	$0.101\substack{+0.037\\-0.045}$
4.	$ \Delta\eta_{jj} $ (<i>MET</i> > 200 GeV)	$ \Delta\eta_{jj} $ analysis with weaker cut	$0.162\substack{+0.065\\-0.045}$	$0.105\substack{+0.042\\-0.029}$	$0.087\substack{+0.034\\-0.025}$
5.	\mathcal{P}^{LR}_J -CNN	Low-Resolution, $\phi_0 = \phi_{j_1}$	$0.078\substack{+0.030\\-0.022}$	$0.051\substack{+0.020\\-0.014}$	$0.045\substack{+0.017\\-0.013}$
6.	\mathcal{P}^{HR}_{J} -CNN	High-Resolution, $\phi_0 = \phi_{j_1}$	$0.070\substack{+0.027\\-0.020}$	$0.043\substack{+0.017\\-0.012}$	$0.035\substack{+0.013\\-0.010}$
7.	\mathcal{P}_{MET}^{LR} -CNN	Low-Resolution, $\phi_{\rm 0}=\phi_{\rm MET}$	$0.092\substack{+0.037\\-0.025}$	$0.062\substack{+0.024\\-0.017}$	$0.053\substack{+0.023\\-0.014}$
8.	\mathcal{P}_{MET}^{HR} -CNN	High-Resolution, $\phi_0 = \phi_{MET}$	$0.086\substack{+0.035\\-0.024}$	$0.058\substack{+0.023\\-0.016}$	$0.051\substack{+0.020\\-0.014}$
9.	K-ANN	8 kinematic-variables	$0.101\substack{+0.052\\-0.022}$	$0.075\substack{+0.029\\-0.021}$	$0.063\substack{+0.027\\-0.017}$
10.	$\mathcal{R} ext{-ANN}$	16 radiative $H_T^{\eta c}$ variables	$0.138\substack{+0.055\\-0.039}$	$0.094\substack{+0.036\\-0.027}$	$0.079\substack{+0.032\\-0.022}$
11.	$\mathcal{H} ext{-}ANN$	Combination of ${\mathcal K}$ and ${\mathcal R}$ variables	$0.094\substack{+0.038\\-0.026}$	$0.065\substack{+0.026\\-0.018}$	$0.057\substack{+0.022\\-0.015}$

▶ Pileup increases the upper-limit within 1σ errors for \mathcal{P}_{J}^{HR} -CNN.


Conclusion

- Posibility to replace decades old dependence on central-jet veto for the reduction of non-VBF backgrounds, in the meantime gaining significantly in performance.
- Low-level calorimeter image outperforms high-level physics motivated features.
 - High-level variables need reconstruction of events. ⇒ Feasibility of CNN/ANN triggers for VBF?
- Minimally affected by pileup even without any mitigation.

Event simulation details

 Modified version of Higgs Effective Field theory model
 Higgs decays at parton level to two scalar dark matter particles for signal

- Finite top-mass: Reweight the Missing *E_T(MET)* distribution
- After preselection cuts: unweighted for Neural Network training
- Parton level cross-sections matched upto 4 and 2 jets for Z_{QCD} and W_{QCD}, respectively

Details of data used in analysis

- Signal and background classes formed by mixing the channels with the expected proportions: $k \times \sigma \times \epsilon_{baseline}$
- ► Shape-analysis(*MET* > 250 GeV):
 - ▶ Signal: 39% S_{EW} and the 61% S_{QCD}
 - \blacktriangleright Background: 54.43% Z_{QCD} , 40.92% $W_{QCD},$ 3.05% Z_{EW} and 1.58% W_{EW}
 - Expected number of background events at 36 fb⁻¹ integrated luminosity, scaled for other luminosities.
- Neural Network analysis(MET > 200 GeV):
 - ▶ Signal: 44.8% *S_{EW}* and the 55.2% *S_{QCD}*
 - Background: 51.221% Z_{QCD}, 44.896% W_{QCD}, 2.295% Z_{EW} and 1.587% W_{EW}
 - 100,000 training and 25,000 validation events for each class
 - Models completely agnostic to validation data
 - Further statistical analysis uses validation data scaled by different luminosities.
- Performed shape-analysis for MET > 200 GeV, for a better comparison.