

Introduction

About me:

Bernd Stechauner

- **Technical Physics Student at CERN** •
- M.Sc. Student at TU Vienna, Austria •
- Currently finishing off my M.Sc. thesis in a final cooling ٠ scheme for muon colliders
- High interests in future particle accelerators ٠

Supervision:

Daniel Schulte

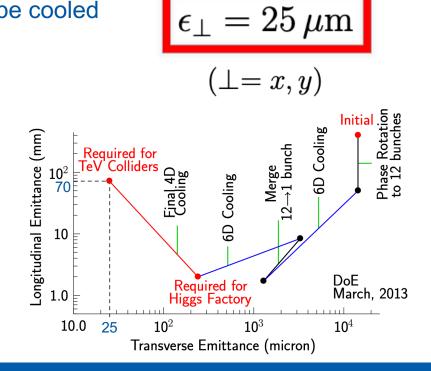
Muon Collider study leader, CERN

Jochen Schieck

- Professor at TU Vienna •
- Director of the Institute of High Energy Physics ٠

CERN, the globe of science

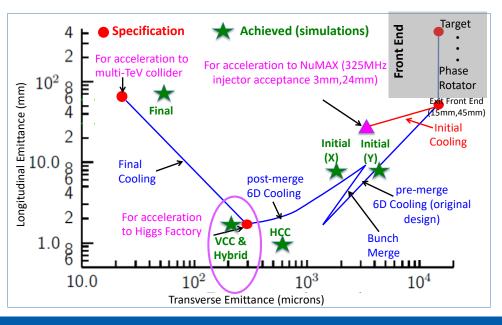
Vienna University of Technology

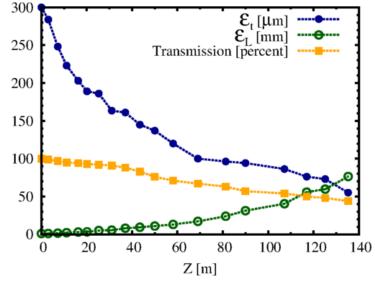


Luminosity Goal for Muon Colliders

- $\mathcal{L} \approx 4 \cdot 10^{35}$ cm⁻²s⁻¹ for c.m. energy of 14 TeV
- For reaching this aim, the beam have to be cooled

$$\mathcal{L} = \frac{N^2}{4\pi\sqrt{\beta_x\beta_y\epsilon_x\epsilon_y/\gamma^2}} \frac{\tau\gamma c}{2C} f_r$$


Muon Collider Parameters												
		Higgs F	actory	Top Thresh	old Options	Multi-TeV Baselines						
								Accounts for				
		Startup	Production	High	High			Site Radiation				
Parameter	Units	Operation	Operation	Resolution	Luminosity			Mitigation				
CoM Energy	TeV	0.126	0.126	0.35	0.35	1.5	3.0	6.0				
Avg. Luminosity	10 ³⁴ cm ⁻² s ⁻¹	0.0017	0.008	0.07	0.6	1.25	4.4	12				
Beam Energy Spread	%	0.003	0.004	0.01	0.1	0.1	0.1	0.1				
Higgs* or Top ⁺ Production/10 ⁷ sec		3,500*	13,500*	7,000 ⁺	60,000 ⁺	37,500*	200,000*	820,000*				
Circumference	km	0.3	0.3	0.7	0.7	2.5	4.5	6				
No. of IPs		1	1	1	1	2	2	2				
Repetition Rate	Hz	30	15	15	15	15	12	6				
β*	cm	3.3	1.7	1.5	0.5	1 (0.5-2)	0.5 (0.3-3)	0.25				
No. muons/bunch	10 ¹²	2	4	4	3	2	2	2				
No. bunches/beam		1	1	1	1	1	1	1				
Norm. Trans. Emittance, ϵ_{TN}	π mm-rad	0.4	0.2	0.2	0.05	0.025	0.025	0.025				
Norm. Long. Emittance, $\epsilon_{\mbox{\tiny LN}}$	π mm-rad	1	1.5	1.5	10	70	70	70				
Bunch Length, σ_{s}	cm	5.6	6.3	0.9	0.5	1	0.5	0.2				
Proton Driver Power	MW	4 [#]	4	4	4	4	4	1.6				



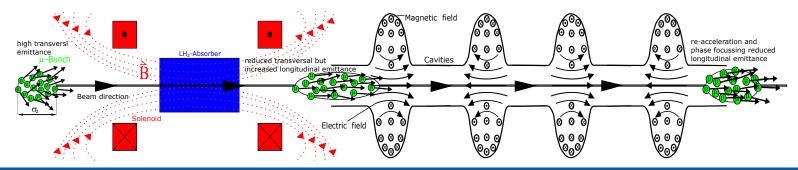
 ϵ_{\perp}

- The issue, the recent study form H. K. Sayed et al reached a transversal emittance of around 55 microns
- Factor 2 higher than needed for the MAP scheme
- Initial beam parameters before injecting into the cooling channel: $E_{Kin} \approx 70$ MeV (135 MeV/c), $\varepsilon_{x,y} \approx 300 \,\mu$ m

High field – low energy muon ionization cooling channel

Hisham Kamal Sayed and Robert B. Palmer Brookhaven National Laboratory, Upton, New York 11973, USA

David Neuffer


Fermi National Laboratory, Batavia, Illinois 60510, USA (Received 27 April 2015; published 4 September 2015)

Final cooling channel, repetition

- Ionization cooling is the only useful technique for cooling muon beams, because e.g., it is fast, and muon-materials interaction is not too strong
- Cooling channel consists off: absorbers, high mag. Fields (e.g. solenoids) and RF for re-acceleration
- Below a certain equilibrium emittance, the beam will be cooled inside the channel
- Heating effects due to Rutherford scattering

Final Cooling
$$\frac{d\epsilon_{\perp,N}}{dz} = -\frac{\epsilon_{\perp,N}}{E\beta^2} \left\langle \frac{\partial E}{\partial z} \right\rangle + \frac{\beta_{\perp}(13.6[\text{MeV}])^2}{2\beta^3 Emc^2 L_{\text{R}}} = \text{cooling + heating}$$

• Beam below a certain eqil. emittance

 $\epsilon_{
m eq} = rac{eta_{\perp}(13.6[{
m MeV}])^2}{2eta mc^2 L_{
m R}\left\langle rac{\partial E}{\partial z}
ight
angle}$

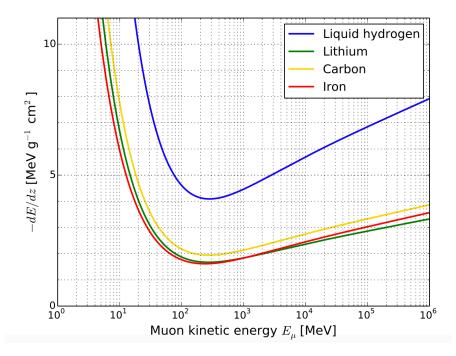
- Low energies increases the cooling term
- At the same time, this leads higher values for the Bethe-Bloch-eq.
- Low β_{\perp} decreases the heating term

$$eta_{\perp}[\mu\mathrm{m}] = rac{2\mathrm{p}[\mathrm{MeV}]}{\mathrm{c}\cdot\mathrm{B}[\mathrm{T}]}\cdot10^{12}$$

 High radiation length (low Z elemtens) decreases the heating term

- ϵ_N ...normalized emittance
- β_{\perp} ...Betatron-function
- β...Lorentz-beta
- $m_{\mu}c^2$...muon energy at rest
- *L_R*...radiation length
- E...energy
- $\left(\frac{\partial E}{\partial z}\right)$...Bethe-Bloch-Equation

z	Material	Z/A	م [g/cm³]	X ₀ [g/cm ²]	l [ev]	dE/cm ⁹	θ_0 [mrad/cm]	equiv.θ ₀ [mrad]
1	HYDROGEN liq	0.99	0.071	61.3	19.2	0.31	2.61	1.48
2	HELIUM	0.50	0.125	94.3	41.8	0.26	2.80	1.74
3	LITHIUM	0.43	0.534	82.8	40	0.96	6.19	1.99
4	BERYLLIUM	0.44	1.848	65.2	63.7	3.27	13.01	2.26
5	BORON	0.46	2.370	53.2	76	4.29	16.34	2.48
6	AMORPHOUS CARBON	0.50	2.000	42.7	81	3.89	16.76	2.67

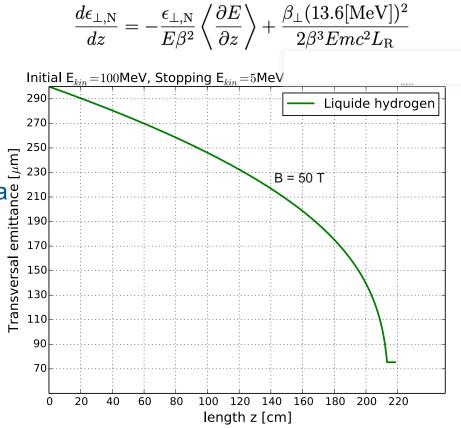


Thesis goal

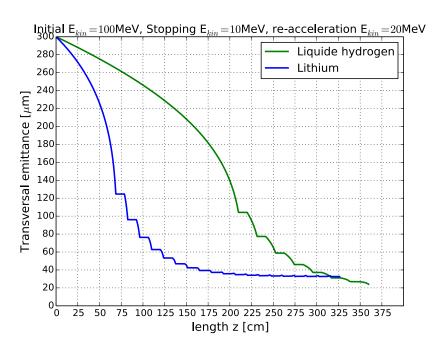
- Highest magnetic field in solenoids was around 30T in the past studies
- For this thesis, solenoidal fields between 40 and 50T will be included
- In the moment: highest B field at 45.5T with REBCO
- Developed at National High Magnetic Field Laboratory, Florida State University <u>https://doi.org/10.1038/s41586-019-1293-1</u>
- Efficient cooling at $5 < E_{Kin} < 200 \text{ MeV}$ and usage of liquid hydrogen

$$\frac{d\epsilon_{\perp,\mathrm{N}}}{dz} = -\frac{\epsilon_{\perp,\mathrm{N}}}{E\beta^2} \left\langle \frac{\partial E}{\partial z} \right\rangle + \frac{\beta_{\perp} (13.6 [\mathrm{MeV}])^2}{2\beta^3 Emc^2 L_{\mathrm{R}}}$$

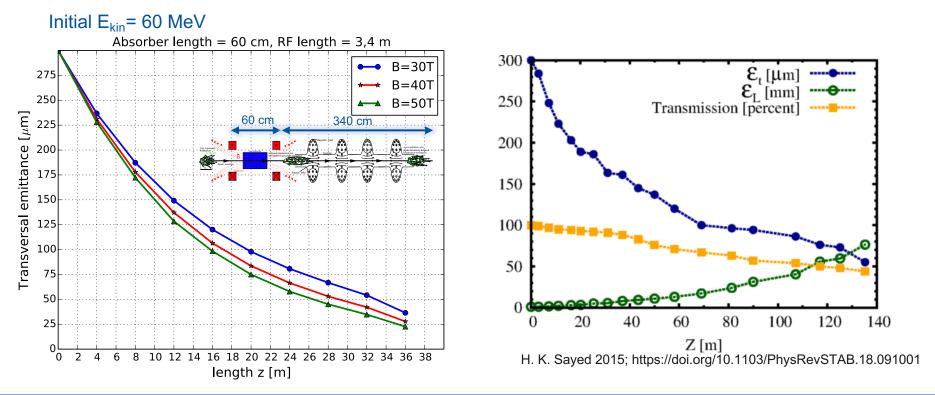
$$- \frac{\partial E}{\partial z} = K z^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2} \ln \left(\frac{2m_{\rm e} c^2 \beta^2 \gamma^2 T_{\rm max}}{I^2} \right) - \beta^2 - \frac{\delta}{2} \right]$$



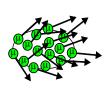
Calculation 1


Assumtion:

- Muon beam injects into LH₂ absorber with E_{kin}= 100 MeV and leaves it after reaching 5 MeV
- The Absorber is inside a solenoid, with age B_z = 50 T in beam direction
 It shows, cooling is more efficient the
- It shows, cooling is more efficient the lower the kinetic energy of the beam is

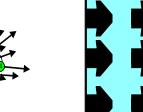

Calculation 2

- Alternating sections of Absorbers (inside B_z= 50 T) re-accelerations
- Initial beam energy at E_{kin}= 100 MeV
- Beam leaves each absorber when reaching 10 MeV
- Afterwards it will be re-accelerated to E_{kin}= 20 MeV
- No complex RF sections are included
- For comparison: channel with only LH₂ and one with only Li absorbers
- Beam cooling more efficient with LH₂, due to larger radiation length and higher Bethe-Bloch values

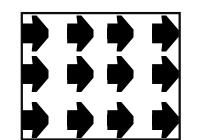


Calculation 3

Current work


ICOOL

- Simulate beam behave through a basic cooling lattice with ICOOL
- First lattice contains LH₂ absorber, with/without solenoidal field
- Compare emittance with/without absorber
- Further, adding RF section after absorber, etc.


Geant4

• Try to re-produce the ICOOL values with a Geant4 simulation

Absorber No Field

Absorber B Field

Vacuum B Field

