

Michal Simon

XRootD5: what's in it for you

&S XRootD

Outline

Short introduction to XRootD5
Secure root/xroot, why and how?
Other goodies

Summary

XRootD5 in few words
Major release, with the most important new feature
being encryption

Protocol and API level backwards compatibility, it is not
ABI compatible — plugins will require recompilation

Released in July 2020, followed by 3 bugfix releases

and one feature release
Released in OSG repo and EPEL
By the end of 2020 pushed to Debian distribution

Secure root/xroot protocol

roots/xroots is the old good root/xroot protocol plus
TLS

Based on OpenSSL
Version 1.0.0 and above
Custom hostname verification added to cover the
older versions

Encrypted and unencrypted version of root/xroot
protocol run on the same port (by default 1094)

Why do we need encryption?

Allows for authorization token handling (e.g. SciToken)
Prerequisite for replacing X509 with access tokens
iIn WLCG

Encrypt confidential data
Encrypt ‘in transit’ data for the CERNBox use case

Encrypt possibly destructive metadata operations (could
replace in the future request signing)

Improves data integrity and allows for further evolution
of Third-Party-Copy

What triggers encryption?

On the client side the roots/xroots protocol;
--notlsok options allows to proceed without
encryption if the server is too old to support it
--tlIsmetalink option allows to apply encryption to all
URLSs in a metalink file

On the server side the xrootd.tls configuration directive,
with few compatibility options:
by default it is off
enforce encryption only for clients that support it
(capable)
do encryption only at client discretion (none)

How flexible Is 1t?

It is pretty flexible ;-) — not everything needs encryption
and (at the beginning) not everyone will support
encryption

One can configure the server to encrypt:
only the third-party-copy orchestration
control channel after login (handy for GSI auth)
control channel before login
data streams
everything

On the client side:
--tlIsnodata allows to apply roots/xroots only to the
control stream

How flexible Is 1t?

110101010001111011011
110101010001111011011
110701070001111011011 ;
1710701070001111011011
110101010001111011011
mm

A
A
S B
)
D]
\

110701010001111011011

17107017010001111011011

110701010001111011071

110701010001111011011
L

110707010001111011011
110701010001111011011

110107010001111011011
17107017010001111011011

A

3

)

)

4

>] 1))
'Y RY -

A
Al
>
)
)
p)

Primary stream and data
streams encrypted
Primary stream encrytped,
data streams unencrypted

©
e
©
©
©
=
@®©
=
@©
)
| -
-+
wn
>
| -
@©
E
| —
a8

streams unencrypted

What lies beneath the flexibility?

Handshake negotiation
All connections are initially non-encrypted
The connection is being upgraded to TLS on client
or server request

If only control channel should be encrypted we open a
second (or multiple) physical connection for the raw data

Encrypted and unencrypted traffic uses the same
port number (not like http vs https) to ease operators
lives

Is roots/xroots widely available?

GFALZ2 has been ported to XRootD5 (in EPEL)
DPM has been ported to XRootD5 (available in EPEL)

EOS has been ported to XRootD5 (successful
encrypted transfer executed in PPS)

dCache devel team (with our help) implemented
roots/xroots support (in Javal!!)

Certificates, certificates, ...

XRootD server needs a host certificate in order to
enable encryption
configurable with xrd.tls directive

If roots/xroots is being used client will enforce host
verification
the hostname must match the one in the host
certificate (or one of the SAN extensions)

Certificates, certificates, ...

The client does not need to have a certificate

the user may use his proxy certificate in order to
establish a TLS connection

server can be configured to enforce client certificate
verification with: xrd.tlsca

Allowing the client to establish the TLS connection
based on user X509 proxy certificate opens door to a
new more concise implementation of gsi
authentication in the future

Implementation

roots/xroots implementations is based on OpenSSL

for better performance, asynchronous APIs and
socket BIOs were used

All TLS actions are logged (e.g. when connection is
upgraded to TLS, what version of TLS is being used)

We are aiming at isolating OpenSSL in the XrdTls
component
should facilitate migration from OpenSSL in the
future (e.g. to NSS)

'* enable write notification when user |

[enqueues new request
F > «< Y

event
read ev. write ev.
A
___ read srvrsp from dequeue req and
socket write to socket
P
out-queue empty? no__/

yes

disable write ¢)

notification

Implementation: event loop (with T

LS support)

*enable write notification when
user engueues new request
7= 7= > Event < -
Wiite read
plain read : o
want read on write want write on read
event event
n no
yes yes
\ read srv rsp from dequeue req and
socket write to socket
want write?
was writing?
want read
\ enable write
notification
\ 4
no
disable write
> notification yes Out-quGu Gy 2 _J

One last word on TLS ...

Design choices (OpenSSL)

Memory BIO vs socket BIO
avoid copying the data in memory
safes time, memory and CPU cycles

Synchronous vs asynchronous interface

reducing context management overhead (single-
threaded way to handle multiple TLS connections)

cryptographic transformations can be more easily
processed on dedicated h/w (Intel QuickAssist)
allows for more optimization
parallel processing at crypto-level

Async vs Sync

Intel NGINX test (2018)

. async + QuickAssits Is significantly faster than sync
- https://01.org/sites/default/files/downloads/intelr-quickassist-

technology/337003-001-intelquickassisttechnologyandopenssi-110.pdf

120,000

100,000

80,000

60,000

40,000

20,000

TLS-1.2 Connections per Second

97,389
90,650
78,525
66,914
54,665
29,044
14,435
14,781 7,272 9,068 10,859 ey 5 242
924 5 90
7,627 1 ga0 3,660 3 37 3 744 4 711
716 1,00 1 81
&
1c2t 2c4t Ac8t 8c16t 10c20t 12c24t 14c28t 16¢32t

Cores/Hyper-Thread

® OpenSSL-1.1.0 SW ® Intel QuickAssist Technology Sync m Intel QuickAssist Technology Async

https://01.org/sites/default/files/downloads/intelr-quickassist-technology/337003-001-intelquickassisttechnologyandopenssl-110.pdf

Upgrade to TLS overhead

CC7, openss| 1.02k-21
Overhead of upgrading the connection to TLS
~2.3 msec to carry out the plain XRootD HS

~7.6 msec to carry out the XRootD HS including
upgrade to TLS (host & client cert verification)

~37.6 msec to carry out the XRootD HS including
GSI authentication

Other goodies

SecEntity re-mastered.:
X509 capabilities, key-value attributes
Credential forwarding, Multi-VO credentials
Easily extensible without breaking API

Universal (both root/xroot and http) VOMS attribute
extractor plugin

xrdvoms plugin was the starting point
Shipped as a sub-package of XRootD in EPEL

Obsoletes several packages (vomsxrd, xrootd-voms-
plugin and xrdhttpvoms)

Other goodies

General purpose new features

Extended file attributes
Extended stat (sets stages for proper uid/gid tracking)
Hardware assisted CRC32C

gstream (monitoring stream optimized to deliver periodic
medium-level info)

Server side plug-in stacking with "++ directive

User plugin gets a pointer to the level-up plugin so it
can call it's implementation

SciTokens plug-in
Client declarative API

Other goodies

Intel ISAL based erasure coding library
For the AliceO2 use case

Ensure data integrity in XCache; significantly reduce
transfer failures due to checksum errors

Paged read: read request with CRC32C (hardware
assisted) per 4KB block

Other goodies

New features for EOS

Write recovery at MGM (allows to recover 99% of 1/O errors for
xrdcp transfers to EOS)

Collapse redirect from passive to active MGM in xrootd client

Facilitate FUSE interaction with passive-active MGM deployment

Simplify buffer management & avoid copying data between
kernel and user space
Using splice/vmsplice syscalls

Speed up data transfer: for slow medium ~3-5%, for fast (like
ramdisk) ~40%; reduces CPU usage by a factor of 3-4

XRootD4 status

We had 5 budfix releases in 4.12.x series after releasing XRootD5

Mostly to backport important fixes for the third-party-copy
with HTTP

End of full support scheduled/proposed for April 1st, 2021

XRootD5 will move to C++14 hence it won’t be possible to
back-port some of the new developments/bugfixes to XRootD4

If desired we can offer a additional period of limited support for
XRootD4

2021 plans

Follow up and support XRootD5 deployment

High priority new developments
Finalize client EC plugin for Alice O2 (Hook it up to EOS)

ZIP append (initial work done by a summer student, will use
checkpoint support on server side)

Data at rest integrity option

Other possible developments

uid/gid tracking; connect control and data streams on
different interface; recursive delete (driven by webdav
semantics)

Get/put file (new TPC); channel level plug-ins; RDMA support;
Extending testing infrastructure (mock event-loop)

Summary

We have a working and fully functional secure
roots/xroots protocol

Many backwards compatibility ‘features’ to facilitate
forward migration path

Plethora of new features and enhancements both for
site admins and developers

Questions?

