### WLCG HEP-SCORE Deployment Task Force

Helge Meinhard / CERN-IT Online HEPiX 16 March 2021

# Why a CPU Benchmark?

- From WLCG perspective, most importantly
  - Experiment requests and site pledges
  - Accounting of CPU usage
- Many sites also use them for procurements



### **CPU Benchmarks in WLCG**

- Pre-2009: WLCG used a benchmark based on SPECint 2000 (part of SPEC-CPU 2000)
- At EOL, WLCG started looking into SPEC CPU 2006
  - C++ applications of both SPECint 2006 and SPECfp 2006 matched applications well
- Defined benchmark in January 2009 as HEP-SPEC06
- At EOL, WLCG started looking into SPEC CPU 2017
  - Found to be a sub-optimal match



# **HEP-SPEC06**

- Defining workload is not enough
  - Also need to describe the conditions of running
  - Chose conditions in 2009 that were as realistic as possible in view of CPU farms in use for WLCG
    - gcc version and flags, 32bit app, as many concurrent processes as cores, ...
  - Scaling behaviour of real workload initially well within about 10% of benchmark
  - Conditions have changed much since then
    - 64bit, new compilers/versions, flags, SMP processors, multi-threaded applications or pilots launching identical binaries multiple times, VMs and containers, ...
  - Still maintained the initial choices
    - Scaling behaviour matching real workload still surprisingly well (often ~ 20% or better with some exceptions)



# HEP-SPEC06: A Success Story

- Used successfully for more than ten years
- Initially designed as a tool for WLCG, found widespread use in other communities (not limited to HEP)
- Key reasons IMO:
  - Benchmark defined as one single number
  - Definition did not change during the HEP-SPEC06 lifetime



## **HEP-SPEC06** Criticism

- Individual reports of scaling deviations of 40% and more
  - Some suggested replacements turned out to be worse for typical workload mixes
- Benchmark workload not typical of HEP applications
  - Would the reasonable scaling persist with non-x86 CPUs, for example? Well, we didn't have that issue (yet)...
- Running HEP-SPEC06 requires a software licence from SPEC
  - Strong desire to consider licence-free benchmarks as successor
- Not representative of full machine potential, not representative of improved experiment workload
  - These are "features" rather than "bugs"
- Time to move on...



# Future HEP Benchmarking (1)

- Pretty much like in 2007/2008, benchmark experts got together and worked on a new benchmark: HEPiX Benchmarking Working Group co-chaired by Manfred Alef (KIT), Domenico Giordano (CERN) and Michele Michelotto (INFN Padua)
  - Several reports to GDB, HEPiX, WLCG MB
    - Domenico's report to MB 26-May-2020: https://indico.cern.ch/event/917098/contributions/3855129/attachments/2045174/3426154/WLCG-MB-26-05-2020-giordano.pdf
    - Domenico's report to HEPiX 13-Oct-2020: https://indico.cern.ch/event/898285/contributions/4034096/attachments/2121862/3571531/HEPiX-Workshop-13-10-2020-giordano.pdf
  - Without fixing the details of how to use it for a given purpose
- With respect to 2008...2009, landscape has changed completely, which implies new challenges and new opportunities



# Future HEP Benchmarking (2)

- Result of the HEPiX benchmarking working group:
  - "HEP Benchmark Suite": Framework for running containerised benchmarking workloads
    - Automatises benchmark runs
    - Ensures structured delivery and storage of results
  - "HEP Workloads": Collection of (mostly) HEP workloads for which it is desirable to obtain performance information
    - Rather dynamic add improved workloads, new compilers/flags/OS, ...
    - Sometimes called "the matrix" or "the basket"
  - "HEP Score": Single number based on a defined, stable combination of defined, stable reference workloads; sample implementation ("HEP-SCORE20") using various LHC experiment workloads (from Run 2)
    - Good consistency with HEP-SPEC06



### **HEP-SCORE** Deployment Task Force

- WLCG Management board discussed and decided to launch a task force
- Started in November 2020, biweekly meetings since then

- Membership:
  - Experts on pledge etc. process / procurements
  - Experiment experts
    - Four LHC experiments
    - Belle 2, DUNE, LIGO/Advanced VIRGO(/KAGRA), JUNO/BES III etc.
  - Site experts
  - Some MB members



## **Task Force Members**

| Name              | Function                | Name              | Function                |
|-------------------|-------------------------|-------------------|-------------------------|
| Tommaso Boccali   | CMS                     | Jeff Templon      | Nikhef                  |
| Simone Campana    | WLCG                    | Andrea Valassi    | LHCb                    |
| Domenico Giordano | Benchmarking WG         | Ian Collier       | STFC-RAL; APEL team     |
| Michel Jouvin     | Tier-2s                 | Gonzalo Merino    | PIC                     |
| Walter Lampl      | ATLAS                   | Fazhi Qi          | JUNO, BES etc.          |
| Andrew McNab      | DUNE                    | Oxana Smirnova    | NDGF                    |
| Helge Meinhard    | WLCG and Convener       | Tony Wong         | US Tier-1s              |
| Bernd Panzer      | CERN                    | Josh Willis       | LIGO/Adv. VIRGO         |
| Stefano Piano     | ALICE                   | Manfred Alef      | KIT and Benchmarking WG |
| Randy Sobie       | Belle 2                 | Alastair Dewhurst | STFC-RAL                |
| Andrew Melo       | Vanderbilt U; US CMS T2 |                   |                         |



# **Task Force Topics**

- Compute facilities at WLCG sites
  - Still very much x86 dominated (mostly Intel, some AMD)
- Compute facilities used (quasi-)opportunistically
  - Various processors (x86, POWER, ARM), e.g. at HPC sites
  - Various GPUs in various relations with CPUs, e.g. at HPC sites
  - May see some of this soon at WLCG sites, too even as part of the pledges
  - More may be coming, e.g. FPGAs



# **Discussions and Agreements So Far**

- Start with CPU benchmarking on x86-based systems; look at other CPUs and/or GPUs later
  - Aim: single benchmark with a stable definition for at least (a typical CPU server lifetime cycle | a complete LHC machine cycle)
- Framework by benchmarking WG is very attractive
  - Use it to record behaviour of (wide) selection of workloads (not limited to HEP) across machines
- No "final" candidate for new benchmark yet
  - Intense discussions whether HEP-SCORE20 is a starting point, and whether HEP workloads should be used at all
  - Decision deferred to after we have got hold of actual experiment workloads (LHC: Run 3?) and have collected data of selection of workloads (see above)



## **Task Force Activities**

#### • Done

- Reports to WLCG GDB and WLCG MB
  - MB endorsed
- Link with accounting (WLCG accounting task force, APEL team) about changes to apply to accommodate new benchmark

#### • Being done

 Round of status reports on workloads (most experiments done, DUNE and non-experiment workloads to come)

#### • Next steps

- Implement workloads, once stable, into HEP Benchmarking Suite (the framework) to form HEP Workloads for data collection
- Establish list of configurations to run HEP Workloads (the collection) on
- Once ready, run on a variety of CPU server configurations to obtain behaviour of all workloads
- Define representative sample of workloads for the final benchmark (HEP-SCORE2x)
  - Including relative weights
- Propose steps for transition from HEP-SPEC06 to HEP-SCORE2x



# Interested? How Can You Help?

- Integrate proposed workloads as containers into HEP Benchmark Suite
- Provide sample machines of typical worker node configurations
  - The more variety we have, the better
- Once ready, run HEP
  Workloads on your
  sample machines

# (Personal) Conclusions

- Defining a HEP-SPEC 06 successor is a complex, ambitious task
  - Will take many months rather than weeks
  - ... and then we will have to tackle non-x86 CPUs and GPUs
- Quite a number of different views on how exactly this should be done
  - Good representation in the task force
- Nonetheless, discussions in a constructive and collaborative spirit
- Steady progress
- Thanks to all task force members!



### **Questions?** Comments?



