DAISY: Data analysis integrated software system for X-ray experiments

Haolai Tian, Yu Hu, Zhibin Liu, Qiulan Huang, Hao Hu, Fazhi Qi

tianhl@ihep.ac.cn(On behalf of Computing Center, IHEP and C&C, HEPS)
HEPiX Spring 2021 online Workshop, 15th March 2021

Overview

Missions & Requirements

Architecture and Design

HEPS Testbed

HEPS: High Energy Photon Source

- New light source in China High energy, high brightness
- Located in Beijing about 80KM from IHEP
- Officially approved in Dec. 2017,
- The construction was started at the end of 2018
- The whole project will be finished in mid-2025

·Main parameters	Unit	Value
Beam energy	GeV	6
Circumference	m	1360.4
Emittance	pm·rad	< 60
Brightness	phs/s/mm²/mrad²/0.1%BW	>10 ²²
Beam current	mA	200
Injection		Top-up

HEPS CC: the Computing & Communication System for HEPS

- 30+ members
 - Most of the members are coming from IHEP CC
 - 3 from CSNS/Computing and Software group
 - 1 from Beamline
- 7 workgroups are set up according to the tasks
 - Infrastructure, Network, Computing & Storage,
 Scientific Software, Data management, Database & Public Service, Monitoring, Security

Matrix management

Sharing talents and skills

IT Services & Beamline Experiments

IT services are needed during the life-cycle of the Beamline experiments

Missions of Analysis Software

'Online' data processing and analysis

- Mission: Guide the experiment (visualize/estimate/characterize)
- Files/Stream (whole/fraction)

'Offline' and remote data analysis

- Mission: Reduction, Reconstruction, Modelling and Simulation
- Huge data volume (co-location of data storage and computing power)

Computing infrastructure

- HPC clusters (Spark/Slurm)
- single workstation (Virtual machine)
- Access: JupyterHub (notebook app)
- Remote desktop (traditional app)

Software deployment and container

- Mission: Re-use and reproduce
- The use of container to archive software environment

Overview

Missions & Requirements

Architecture and Design

HEPS Testbed

Inspired by Many Projects

Data Visualization and Processing & IDE

Decouple Control and Execution Module

Decouple Execution and Data Obj Module

Integrate with existing code via Algorithm

Software Framework Overview

Scientific Domain: Algorithm and Workflow

```
import numpy as np
import tomopy
from Daisy import DaisyAlg
class AlgTomopyRecon(DaisyAlg):
   def __init__(self, name):
       super().__init__(name)
   def initialize(self):
       self.data = self.get("DataStore").data()
       self.LogInfo("initialized, Tomopy Reconstruction")
        return True
   def execute(self, input_dataobj, theta, center, alg_type, output_dataobj):
       projs = self.data[input_dataobj]
       thetas = self.data[theta]
       dataobj = tomopy.recon(projs, thetas, center=center, algorithm=alg_type)
       self.data[output_dataobj] = dataobj
        return True
   def finalize(self):
       self.LogInfo("finalized")
       return True
```

@Daisv.Singleton class WorkflowCTReconstruct(Daisy.PyWorkflow): B def execute(self): self.engine['loadhdf5'].execute(input_path='/entry/tomo', output_dataobj='tomodata') self.engine['loadhdf5'].execute(input_path='/entry/dark', output_dataobj='darkdata') self.engine['loadhdf5'].execute(input_path='/entry/flat', output_dataobj='flatdata') self.engine['normalize'].execute(projs_dataobj='tomodata',darks_dataobj='darkdata',\ flats_dataobj='flatdata', output_dataobj='normdata') self.engine['angles'].execute(input_dataobj='normdata', output_dataobj='thetas') self.engine['minuslog'].execute(input_dataobi='normdata'.output_dataobi='mlogdata') self.engine['reconstruct'].execute(input_dataobj='mlogdata', theta='thetas',\ center=1030, alg_type='fbp',output_dataobj='recodata') self.engine['savehdf5'].execute(input_dataobj='recodata',output_path='/entry/reco') wf = WorkflowCTReconstruct('WorkflowCTReconstruct') wf.initialize(workflow_engine='PyWorkflowEngine', \ workflow_environment = init_dict, algorithms_cfg = cfg_dict) wf.execute() data =wf.data_keys() algs =wf.algorithm_keys() wf.finalize()

Scientific Domain

- Algorithms
- Workflow

Running Time Management: Workflow Engine and Data Store

Overview

Missions & Requirements

Architecture and Design

HEPS Testbed

HEPS Testbed @ 3W1 at BSRF

The Workflow Configurations

Reconstruction Service for Tomography

Demo: PyFAI & Tomopy

Thanks