HEP Benchmarks updates and demo

D. Giordano (CERN/IT)

on behalf of HEPiX CPU Benchmarking WG hepix-cpu-benchmark@hepix.org

HEPiX Spring 2021 Online workshop 16 March 2021

HEP Benchmarks project

Three main components being developed since ~2 years

!!! Released under GPLv3 licence !!!

- HEP Workloads
 - Individual reference HEP workloads
 - Common build infrastructure
- HEP Score
 - Orchestrate the run of a series of HEP workloads
 - Compute the **HEPscore** value
 - Report whole set of WL results
- HEP Benchmark Suite
 - Meta-orchestrator of multiple benchmark suites
 - HEPscore, HS06, SPEC CPU2017...

. . . _

Summary of currently supported HEP workloads

Description

link

link

link

link

link

link

link

link

link

Name

gen-sim

sim

digi-reco

aen-sim

digi

reco

gen-sim

gen-sim-

Experiment

Atlas

Atlas

Atlas

CMS

CMS

CMS

LHCb

Belle2

HEP Workloads: Status

☐ Included new CPU Experiments workloads

- Bellell (done), Atlas sim MT (in progress)
- To come: Dune, gravitational waves, WeNMR, ...
- First GPU workload containerized
 - SimpleTrack (LHC simulation)
 - Multi-GPU container workloads (Nvidia, AMD, Intel...)

https://gitlab.cern.ch/hep-benchmarks/hep-workloads

Experiment

GNU GPL v3

Apache v2

Apache v2

Apache v2

Apache v2

Apache v2

Apache v2

GNU GPL v3

GNU GPL v3

license

Latest

docker

docker

docker

docker

docker

docker

docker

docker

Container

Readiness

w.i.p.

Υ

w.i.p.

Υ

Υ

Υ

Pipeline status

pipeline passed

pipeline passed

pipeline passed

pipeline passed

pipeline passed

pipeline passed

- Include the Run-3 CPU workloads proposed in the WLCG HEP Score Task Force
 - Support multiple architectures (e.g. ARM) as long as Experiments' software has been ported
- Integrate other GPU workloads: next CMS Patatrack (HLT Track reco), MC Madgraph

HEP Score v1.0 : Status

- ☐ Several new features included in this <u>new release</u>
 - Singularity and Docker engines are both supported, forced user namespace too
 - Access of cvmfs unpacked images
 - Better handling of disk space, configurable cleanup of the working directory
 - Optimised the report structure, allows retries in case of run failures
 - Improved CI tests
 - Configurable weighted geometric mean for the HEP workloads
 - Python wheels available: useful for installations in sites with limited external connectivity
- ☐ To install & Run: documentation at https://gitlab.cern.ch/hep-benchmarks/hep-score
- ☐ Main developers: C. Hollowell, C. van der Laan, D. Southwick

HEPscore2X: the configuration

- ☐ HEP Score tool is configurable
 - Config: list of workloads to run, reference scores & weights, settings
- ☐ HEP Score pkg distributed with a <u>default</u> config file: **HEPscore2X**
 - Includes the most stable workloads tested so far on CPUs up to <u>256 cores</u>
 - "2X" to be replaced by the year of future adoption
- ☐ The official config will be defined by the WLCG HEP Score Task Force
 - After inclusion of Run3 workloads and performance study
- NB: Other config files can be used and passed to the tool
 - Convenient to include new workloads and perform studies
 - Each config is associated to an unique ID in the final report

```
atlas-gen-bmk:
  results_file: atlas-gen_summary.json
belle2-gen-sim-reco-bmk:
   esults_file: belle2-gen-sim-reco_summary.json
  results_file: cms-gen-sim_summary.json
   esults_file: cms-digi_summary.json
  results_file: cms-reco_summary.json
  weight: 1.0
  _events: 50
 lhcb-gen-sim-bmk:
  results_file: lhcb-gen-sim_summary.json
reference machine: "CPU Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz'
registry: docker://gitlab-registry.cern.ch/hep-benchmarks/hep-workload
```

hepscore2X_0.8.yaml [1.45 KB

HEP Benchmark Suite v2.0

- Meta-orchestrator for the execution of several benchmarks and the publication of the suite's report
 - HS06, HEP Score, SPEC CPU 2017, ...
- ☐ Features of this new version
 - Modular design, fully rewritten in python3.6+
 - Distributed via pip install, <u>python wheels available</u>
 - Metadata section with detailed HW information
 - Install as unprivileged user
 - HPC compatible: example of SLURM submission
 - Run also on Grid pilot jobs: example
 - see next slide
- Main developers: M. Fontes Medeiros, D. Southwick

HEPscore "slim" config on grid sites

- A "slim" version of the HEPscore2X config, including only CMS gen-sim, digi, reco
- ☐ Running on 4-cores job slots
- ☐ User job submission, glide-in singularity pilot runs
 - Requires singularity-in-singularity

 (i.e. user namespaces) enabled on
 the grid site
- Results collected in central DB (Elasticserach) and monitored via Kibana dashboards
- Enables sampling of grid nodes' real performance

HS06 and SPEC CPU 2017

- ☐ Make sure that HS06 and SPEC CPU 2017 can run via the Suite
 - Orchestrator scripts and libraries available in a container image, built at https://gitlab.cern.ch/hep-benchmarks/hep-spec/
 - NB: the SPEC suites are not included for license reasons, have to be pre-installed on the host
- ☐ HS06
 - Config is linux gcc cern.cfg used by HS06 in the last decade, with few adaptations
- ☐ SPEC CPU 2017
 - Default "HEP" benchmark set to mimic HS06: Cpp-rate set of benchmarks
 - Benchmark set can be reconfigured. Eg. -b intrate will run SPEC INT 2017 rate
 - NB: All configuration changes are tracked in the reported results
 - Config similar to <u>linux_gcc_cern.cfg</u>, distinct for x86 and ARM

HS06 for ARM CPUs

- Enable support for ARM
 - Multi-architecture container

- We do not appear to have working vendor—supplied binaries for your architecture. You will have to compile the tool binaries by yourself. Please read the file SPEC_CPU2006_v1.2/Docs/tools—build.html for instructions on how you might be able to build them. Please only attempt this as a last resort.
- gitlab-registry.cern.ch/hep-benchmarks/hep-spec/hepspec-cc7-multiarch:v2.0
- SPEC CPU 2017 already supports ARM cpus. Only CPU model needs to be changed when running on ARM
- HS06 too old to support natively ARM cpus: SPEC 2006 tooklit needed to be built to work
 - Build the toolkit following instructions https://www.spec.org/cpu2006/Docs/tools-build.html
 after patching some old code
 - Patch procedure available https://gitlab.cern.ch/hep-benchmarks/hep-spec/-/tree/master/patch_SPEC2006
- NB: patching the toolkit is one time operation
 - The toolkit is then included in the tool/bin area
 Re-creating an archive for SPEC CPU 2006 allows to use it in any other aarch64 machine
- NB: HS06 for ARM only supported at 64 bits

Running HS06 on ARM

AWS Graviton2 bare-metal server benchmarked using the

hepspec multi-architecture container (see previous slide)

```
$ lscpu
Architecture:
                                 aarch64
CPU op-mode(s):
                                 32-bit, 64-bit
Byte Order:
                                 Little Endian
CPU(s):
                                 64
On-line CPU(s) list:
                                 0-63
Thread(s) per core:
                                 1
Core(s) per socket:
                                 64
Socket(s):
                                 1
NUMA node(s):
Vendor ID:
                                 ARM
Model:
Model name:
                                 Neoverse-N1
Stepping:
                                 r3p1
BogoMIPS:
                                 243.75
L1d cache:
                                 4 MiB
L1i cache:
                                 4 MiB
L2 cache:
                                 64 MiB
L3 cache:
                                 32 MiB
NUMA node0 CPU(s):
                                 0 - 63
```

```
{"hs06":{"start":"Sat Feb 27 17:19:26 UTC 2021", "end":"Sat Feb 27 20:10:46 UTC 2021", "copies":64,

"runcpu_args":"1 runspec: runspec --define machine_option:64 --config=linux_gcc_cern.cfg --action=build all_cpp;64 runs

pec: runspec --define machine_option:64 --config=linux_gcc_cern.cfg --nobuild --noreportable --iterations=3 all_cpp)", "bset":"all
_cpp", "LINK":" 6 g++ -02 -fPIC -pthread -DSPEC_CPU_LP64 <objects> -o options; 1 g++ -02 -fPIC -pthread -DSPEC_CPU_LP

64 -DSPEC_CPU_LINUX <objects> -o options;", "hash":"7b84bb375cee11731a958a26d6fc155d",

"score":1170.998, "avg_core_score": 18.296, "num_bmks":7 ,"bmks":{ "444.namd":[ 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23.5, 23
```


Demo

- ☐ Login to newly created VM
- ☐ Run HEP Score example
 - Install singularity, python3-pip, wheels of HEP Benchmark Suite
 - Run and collect results in Elasticsearch
- ☐ Run HS06 example
 - install singularity, python3-pip, git & HEP Benchmark Suite
 - Run and collect results in Elasticsearch

Demo: install

Grid certificate to authenticate to the AMQ broker [root@bmk16-cc7-ad4orebalr ~]# ls
anaconda-ks.cfg original-ks.cfg usercert.pem userkey.pem
[root@bmk16-cc7-ad4orebalr ~]# ■

Install singularity and python3-pip

Download example script

[root@bmk16-cc7-ad4orebalr ~]# curl -0 https://gitlab.cern.ch/hep-benchmarks/hep-benchmarks uite/-/raw/master/examples/hepscore/run_HEPscore_default_from_wheels.sh % Total % Received % Xferd Average Speed Time Time Time Current Dload Upload Total Spent Left Speed 100 1957 100 1957 0 0 10166 0 --:--:- --:-- 10246 [root@bmk16-cc7-ad4orebalr ~]# vi run_HEPscore_default_from_wheels.sh

Demo: edit

- Edit the script
 - Change site name
 - User certificate path, for data publication
 - Enable publishing to AMQ broker
 - Add a custom tag (not mandatory)

```
echo "Runnina script: $0"
cd $( dirname $0)
WORKDIR=`pwd`/workdir
mkdir -p $WORKDIR
chmod a+rw -R $WORKDIR
cat > $WORKDIR/bmkrun_config.yml <<EOF2
activema:
  server: dashb-mb.cern.ch
  topic: /topic/vm.spec
  port: 61123 # Port used for certificate
  ## include the certificate full path (see documentation)
  key: '/root/userkey.pem'
  cert: '/root/usercert.pem'
alobal:
  benchmarks:
  - hepscore
  mode: singularity
  publish: true
  rundir: ./suite_results
  show: true
hepscore:
  version: v1.0
  config: default
  options:
      userns: True
      clean: True
E0F2
cd $WORKDIR
export MYENV="env_bmk"
                              # Define the name of the environment.
                              # Create a directory with the virtual environment.
python3 -m venv $MYENV
                             # Activate the environment.
source $MYENV/bin/activate
wheels_version=hep-benchmark-suite-wheels-v2.0.tar
curl -0 https://hep-benchmarks.web.cern.ch/hep-benchmark-suite/releases/${wheels_version}
tar xvf ${wheels_version}
python3 -m pip install suite_wheels/*.whl
cat bmkrun_config.yml
```

13

Demo: run (1)

- Downloads wheels
- Install packages
- ..

```
[root@bmk16-cc7-ad4orebalr ~]# ./run_HEPscore_default_from_wheels.sh
Running script: ./run_HEPscore_default_from_wheels.sh
  % Total % Received % Xferd Average Speed Time
                                                        Time
                                                                 Time Current
                                Dload Upload Total Spent
                                                                 Left Speed
100 1480k 100 1480k
                                982k
                                           0 0:00:01 0:00:01 --:-- 982k
suite_wheels/
suite_wheels/pbr-5.5.1-py2.py3-none-any.whl
suite_wheels/typina_extensions-3.7.4.3-pv3-none-anv.whl
suite_wheels/importlib_metadata-3.7.2-py3-none-any.whl
suite_wheels/stomp.pv-6.1.0-pv3-none-anv.whl
suite_wheels/PyYAML-5.4.1-cp36-cp36m-manylinux1_x86_64.whl
suite_wheels/zipp-3.4.1-pv3-none-anv.whl
suite_wheels/hep_benchmark_suite-2.0-py3-none-any.whl
suite_wheels/hep_score-1.0.0-pv3-none-anv.whl
suite_wheels/setuptools-44.1.1-py2.py3-none-any.whl
suite_wheels/docopt-0.6.2-py2.py3-none-any.whl
Processing ./suite_wheels/PyYAML-5.4.1-cp36-cp36m-manylinux1_x86_64.whl
Processing ./suite_wheels/docopt-0.6.2-py2.py3-none-any.whl
Processing ./suite_wheels/hep_benchmark_suite-2.0-py3-none-any.whl
Processing ./suite_wheels/hep_score-1.0.0-py3-none-any.whl
Processing ./suite_wheels/importlib_metadata-3.7.2-py3-none-any.whl
Processing ./suite_wheels/pbr-5.5.1-py2.py3-none-any.whl
Processing ./suite_wheels/setuptools-44.1.1-py2.py3-none-any.whl
Processing ./suite_wheels/stomp.py-6.1.0-py3-none-any.whl
Processing ./suite_wheels/typing_extensions-3.7.4.3-py3-none-any.whl
Processing ./suite_wheels/zipp-3.4.1-pv3-none-anv.whl
Installing collected packages: PyYAML, docopt, typing-extensions, zipp, importlib-metadata, stomp.py, hep-benchmark-suite, setuptools, pbr,
hep-score
 Found existing installation: setuptools 39.2.0
   Uninstalling setuptools-39.2.0:
      Successfully uninstalled setuptools-39.2.0
Successfully installed PyYAML-5.4.1 docopt-0.6.2 hep-benchmark-suite-2.0 hep-score-1.0.0 importlib-metadata-3.7.2 pbr-5.5.1 setuptools-44.1
.1 stomp.py-6.1.0 typing-extensions-3.7.4.3 zipp-3.4.1
```


Demo: run (2)

- Downloads wheels
- Install packages
- Execute the Suite (bmkrun),
 reading the config
 bmkrun config.yml
- Perform checks
 - Singularity version, disk space, HEP Score version
- Run HEP Score
- ...

```
# The following configuration was loaded: bmkrun_config.vml
2021-03-13 15:06:34, hepbenchmarksuite,hepbenchmarksuite;start ΓΙΝΕΟΊ Startina HEP Benchmark Suite
2021-03-13 15:06:34, hepbenchmarksuite.hepbenchmarksuite:preflight [INFO] Running pre-flight checks
2021-03-13 15:06:34, hepbenchmarksuite.hepbenchmarksuite:preflight [INFO] - Checking if selected run mode exists...
                                                                           - singularity executable found: /usr/bin/singularity.
2021-03-13 15:06:34, hepbenchmarksuite.hepbenchmarksuite:preflight ΓΙΝΕΟΊ
2021-03-13 15:06:34. hepbenchmarksuite.hepbenchmarksuite:preflight ΓΙΝΕΟΊ

    singularity version: 3.7.1-1.el7.

2021-03-13 15:06:34, hepbenchmarksuite.hepbenchmarksuite:preflight [INFO] - Checking provided work dirs exist...
2021-03-13 15:06:34, hepbenchmarksuite.hepbenchmarksuite:preflight [INFO] - Checking for a valid configuration...
2021-03-13 15:06:34, hepbenchmarksuite.hepbenchmarksuite:preflight ΓΙΝΕΟΙ - Checking if rundir has enough space...
2021-03-13 15:06:34, hepbenchmarksuite.hepbenchmarksuite:start [INFO] Pre-flight checks passed successfully.
2021-03-13 15:06:34, hepbenchmarksuite.hepbenchmarksuite:run [INFO] Benchmarks left to run: ['hepscore']
2021-03-13 15:06:34, hepbenchmarksuite.hepbenchmarksuite:run [INFO] Running benchmark: hepscore
2021-03-13 15:06:34, hepbenchmarksuite.benchmarks:prep_hepscore [INFO] Checking if hep-score is installed.
2021-03-13 15:06:34, hepbenchmarksuite_benchmarks:prep_hepscore [INFO] Found existing installation of hep-score in the system: v1.0.0
2021-03-13 15:06:34, hepbenchmarksuite.benchmarks:prep_hepscore [INFO] Installation matches requested version in the config file: v1.0
2021-03-13 15:06:34, hepbenchmarksuite.benchmarks:run_hepscore [INFO] Attempting to import hepscore
2021-03-13 15:06:34, hepbenchmarksuite.benchmarks:run_hepscore [INFO] Successfully imported hepscore
2021-03-13 15:06:34, hepbenchmarksuite, benchmarks; run_hepscore ΓΙΝΕΟ] Using default config provided by hepscore.
2021-03-13 15:06:34, hepbenchmarksuite.benchmarks:run_hepscore [INFO] Starting hepscore
2021-03-13 15:06:34, hepscore.hepscore:run [INFO] HEPscore2X Benchmark
2021-03-13 15:06:34, hepscore.hepscore:run [INFO] Config Hash:
                                                                       430b0c7e62755bffa1495348e21e4c43e54a22067ef349acdcd593fb55b8dbb2
2021-03-13 15:06:34, hepscore.hepscore:run [INFO] System:
                                                                       Linux bmk16-cc7-ad4orebalr.cern.ch 3.10.0-1160.15.2.el7.x86_64 #1 SM
P Wed Feb 3 15:06:38 UTC 2021 x86 64
2021-03-13 15:06:34, hepscore.hepscore:run [INFO] Container Execution: singularity
2021-03-13 15:06:34, hepscore.hepscore:run [INFO] Registry:
                                                                       docker://gitlab-registry.cern.ch/hep-benchmarks/hep-workloads
2021-03-13 15:06:34, hepscore.hepscore:run [INFO] Output:
                                                                       ./suite_results/run_2021-03-13_1406/HEPSCORE
2021-03-13 15:06:34, hepscore.hepscore:run [INFO] Date:
                                                                       Sat Mar 13 15:06:34 2021
2021-03-13 15:06:34, hepscore.hepscore:_run_benchmark [INFO] Executing 3 runs of atlas-gen-bmk
2021-03-13 15:06:34, hepscore.hepscore:_run_benchmark [INFO] Creating singularity cache ./suite_results/run_2021-03-13_1406/HEPSCORE/scache
2021-03-13 15:06:34. hepscore.hepscore: run_benchmark [INFO] Starting run0
```


Demo: run (3)

- bmkrun_config.yml
- Run HEP Score
 - Notice the execution of the individual workloads
 - Overall duration: 3h50' for 3 runs of each workload

```
2021-03-13 15:06:34, hepscore.hepscore:_run_benchmark [INFO] Executing 3 runs of atlas-gen-bmk
2021-03-13 15:06:34, hepscore.hepscore:_run_benchmark [INFO] Creating singularity cache ./suite_results/run_2021-03-13_1406/HEPSCORE/scache
2021-03-13 15:06:34, hepscore,hepscore:_run_benchmark [INFO] Starting run0
2021-03-13 15:15:35, hepscore.hepscore:_run_benchmark [INFO] Starting run1
2021-03-13 15:23:43, hepscore.hepscore:_run_benchmark [INFO] Starting run2
2021-03-13 15:31:50, hepscore.hepscore:_container_rm [INFO] Removing temporary singularity cache ./suite_results/run_2021-03-13_1406/HEPSCORE/scache
2021-03-13 15:31:50, hepscore.hepscore:_run_benchmark [INFO]
2021-03-13 15:31:50, hepscore.hepscore:_run_benchmark [INFO] Executing 3 runs of belle2-gen-sim-reco-bmk
2021-03-13 15:31:50, hepscore.hepscore:_run_benchmark [INFO] Creating singularity cache ./suite_results/run_2021-03-13_1406/HEPSCORE/scache
2021-03-13 15:31:50, hepscore.hepscore:_run_benchmark [INFO] Starting run0
2021-03-13 15:40:56, hepscore,hepscore: run_benchmark [INFO] Starting run1
2021-03-13 15:48:26, hepscore.hepscore:_run_benchmark [INFO] Starting run2
2021-03-13 15:55:55, hepscore.hepscore:_container_rm [INFO] Removing temporary singularity cache ./suite_results/run_2021-03-13_1406/HEPSCORE/scache
2021-03-13 15:55:56, hepscore.hepscore:_run_benchmark [INFO]
2021-03-13 15:55:56, hepscore.hepscore:_run_benchmark [INFO] Executing 3 runs of cms-gen-sim-bmk
2021-03-13 15:55:56, hepscore.hepscore:_run_benchmark [INFO] Creating singularity cache ./suite_results/run_2021-03-13_1406/HEPSCORE/scache
2021-03-13 15:55:56, hepscore.hepscore:_run_benchmark [INFO] Starting run0
2021-03-13 16:05:57, hepscore, hepscore: run_benchmark [INFO] Starting run1
2021-03-13 16:13:42, hepscore,hepscore:_run_benchmark [INFO] Starting run2
2021-03-13 16:21:30, hepscore.hepscore:_container_rm [INFO] Removing temporary singularity cache ./suite_results/run_2021-03-13_1406/HEPSCORE/scache
2021-03-13 16:21:31, hepscore.hepscore:_run_benchmark [INFO]
2021-03-13 16:21:31, hepscore.hepscore:_run_benchmark [INFO] Executing 3 runs of cms-digi-bmk
2021-03-13 16:21:31, hepscore.hepscore:_run_benchmark [INFO] Creating singularity cache ./suite_results/run_2021-03-13_1406/HEPSCORE/scache
2021-03-13 16:21:31, hepscore.hepscore:_run_benchmark [INFO] Starting run0
2021-03-13 16:32:29, hepscore.hepscore:_run_benchmark [INFO] Starting run1
2021-03-13 16:38:29, hepscore.hepscore:_run_benchmark [INFO] Starting run2
2021-03-13 16:44:29, hepscore.hepscore:_container_rm [INFO] Removing temporary singularity cache ./suite_results/run_2021-03-13_1406/HEPSCORE/scache
2021-03-13 16:44:30, hepscore.hepscore:_run_benchmark [INFO]
2021-03-13 16:44:30, hepscore.hepscore:_run_benchmark [INFO] Executing 3 runs of cms-reco-bmk
2021-03-13 16:44:30, hepscore.hepscore:run_benchmark [INFO] Creating singularity cache ./suite_results/run_2021-03-13_1406/HEPSCORE/scache
2021-03-13 16:44:30, hepscore.hepscore:_run_benchmark [INFO] Starting run0
2021-03-13 17:04:12, hepscore.hepscore:_run_benchmark [INFO] Starting run1
2021-03-13 17:20:19, hepscore.hepscore:_run_benchmark [INFO] Starting run2
2021-03-13 17:36:23, hepscore,hepscore;_container_rm [INFO] Removing temporary singularity cache ./suite_results/run_2021-03-13 1406/HEPSCORE/scache
2021-03-13 17:36:24, hepscore.hepscore:_run_benchmark [INFO]
2021-03-13 17:36:24, hepscore.hepscore:_run_benchmark [INFO] Executing 3 runs of lhcb-gen-sim-bmk
2021-03-13 17:36:24, hepscore.hepscore; run benchmark [INFO] Creating singularity cache ./suite results/run 2021-03-13 1406/HEPSCORE/scache
2021-03-13 17:36:24, hepscore,hepscore: run_benchmark ΓΙΝΕΟ] Starting run@
2021-03-13 18:04:10, hepscore.hepscore:_run_benchmark [INFO] Starting run1
2021-03-13 18:30:27, hepscore.hepscore:_run_benchmark [INFO] Starting run2
2021-03-13 18:56:41, hepscore.hepscore:_container_rm [INFO] Removing temporary singularity cache ./suite_results/run_2021-03-13_1406/HEPSCORE/scache
2021-03-13 18:56:41, hepscore.hepscore:_run_benchmark [INFO]
2021-03-13 18:56:41, hepscore.hepscore:gen_score [INFO] Final result: 230.4851
2021-03-13 18:56:41, hepbenchmarksuite.hepbenchmarksuite:run [INFO] Completed hepscore with return code 0
2021-03-13 18:56:41, hepbenchmarksuite.plugins.extractor:collect_sw [INFO] Collecting SW information.
2021-03-13 18:56:41, hepbenchmarksuite.plugins.extractor:collect_hw [INFO] Collecting HW information.
2021-03-13 18:56:41, hepbenchmarksuite.plugins.extractor:collect_cpu [INFO] Collecting CPU information.
2021-03-13 18:56:41, hepbenchmarksuite.plugins.extractor:collect_bios [INFO] Collecting BIOS information.
2021-03-13 18:56:41, hepbenchmarksuite.plugins.extractor:collect_system [INFO] Collecting system information.
2021-03-13 18:56:41, hepbenchmarksuite.plugins.extractor:collect_memory [INFO] Collecting system memory.
2021-03-13 18:56:41, hepbenchmarksuite.plugins.extractor:collect_storage [INFO] Collecting system storage.
2021-03-13 18:56:42, hepbenchmarksuite.hepbenchmarksuite:cleanup [INFO] Reading result file: ./suite_results/run_2021-03-13_1406/HEPSCORE/hepscore_result.jsor
2021-03-13 18:56:42, hepbenchmarksuite.hepbenchmarksuite:cleanup ΓΙΝΕΟΊ Successfully completed all requested benchmarks
```


16/03/2021

Demo: results in the central DB @ CERN

Demo: run HS06

```
cat > $WORKDIR/bmkrun_config.yml <<EOF2
activemq:
  server: dashb-mb.cern.ch
  topic: /topic/vm.spec
  port: 61123 # Port used for certificate
  ## include the certificate full path (see documentation)
  key: '/root/userkey.pem'
  cert: '/root/usercert.pem'
global:
  benchmarks:
  - hs06
  mode: singularity
  publism: true
  rundir: ${WORKDIR}/suite_results
   site: CERN
    description: "HEPiX_Demo'
                                                                                      [6]
                                                                               韶
hepspec06:
  # Use the docker registry
  image: "docker://gitlab-registry.cern.ch/hep-benchmarks/hep-spec/hepspec-cc7
                                                                               டு
  # URL to fetch the hepspec06. It will only be used if the software
  # is not found under hepspec_volume.
  url_tarball:
                                                                                            0.8
  # Define the location on where hepspec06 should be found
  # If hepspec06 is not present, the directory should be writeable
                                                                                         ₩ 0.6
  " to allow the installation via the wel_tarbell
  hepspec_volume: "/tmp/SPEC"
                                                                                         S 0.4
  ## Number of iterations to run the benchmark
                                                                                            0.2
  iterations: 3
  ## Specifies if benchmark is run on 32 or 64 bit mode
  ## Default is 64-bit
 mode: 32
EOF2
cd $WORKDIR
export MYENV="env_bmk"
                              # Define the name of the environment.
python3 -m veny $MYENV
                             # Create a directory with the virtual environmen
source $MYENV/bin/activate
                             # Activate the environment.
python3 -m pip install git+https://gitlab.cern.ch/hep-benchmarks/hep-benchmark
cat bmkrun_config.yml
if [ `cat bmkrun_config.yml | grep "this_is_dummy_replace_me" | grep -c -v "#'
  echo -e "\nERROR. You are using the url_tarball parameter. Please replace the dummy url with a real one"
 exit 1
```

- Similarly to run HEP Score
 - Download the example
 - Modify few parameters & run
- SPEC CPU 2017 is similar (read the doc)

bmkrun -c bmkrun_config.yml

Credits

Collective effort of several member of the HEPiX Benchmarking WG

☐ CHEP21 abstract

HEPiX benchmarking solution for WLCG computing resources

Miguel F. Medeiros^{1,*}, Manfred Alef², Luca Atzori¹, Jean-Michel Barbet³, Ingvild Brevik Høgstøyl⁴, Olga Datskova¹, Riccardo De Maria¹, Domenico Giordano¹, Maria Girone¹, Christopher Hollowell⁵, Michele Michelotto⁶, Andrea Sciabà¹, Tristan Sullivan⁷, Randal Sobie⁷, David Southwick^{1,8}, and Andrea Valassi¹ from HEPiX Benchmarking Working Group

Abstract. The HEPiX Benchmarking Working Group has been developing a

¹CERN, Geneva, Switzerland

²KIT, Karlsruhe, Germany

³Laboratoire SUBATECH, CNRS-IN2P3, Nantes, France

⁴Norwegian University of Science and Technology, Norway

⁵Brookhaven National Laboratory, USA

⁶INFN, Istituto Nazionale di Fisica Nucleare, Padova, Italy

⁷University of Victoria, Canada

⁸University of Iowa, USA

Conclusions

- ☐ HEP Benchmark Suite and HEP Score are ready to be tested by our community
 - New HEP Workloads (mainly LHC Run3) will be made available during 2021
- Need volunteer sites to run the Suite and benchmark several CPU models
 - This will permit the studies recommended by the WLCG HEP Score Task Force
- ☐ Feedback and support questions are welcome in the HEP Benchmarks Project Discourse Forum

Useful links

Recent publication (CHEP 2019)

Project repository

Documentation: <u>HEP Score</u>, <u>HEP Benchmark Suite</u>

Benchmark comparing "speed factors"

☐ In order to compare servers HS06 and HEP-Score implement the geometric mean approach. Needs:

$$\left(\prod_{i=1}^n x_i
ight)^{rac{1}{n}} = \sqrt[n]{x_1x_2\cdots x_n}$$

https://en.wikipedia.org/wiki/Geometric_mear

- a set of reference workloads (WLs)
- a measure of performance per WL (m_i), that typically goes as [1/s] (eg. can be the event throughput)
- · a reference machine
- The score S of a server (srv) is defined as the **geometric mean** of the speed factors $x_i(srv,ref) = m_i(srv)/m_i(ref)$ respect to the reference machine (ref)
 - i.e. "speed" is *normalised* respect to the reference machine "speed"
- \Box The relative score between srv_A and srv_B is the ratio of the scores S(srv,ref), this is still a geometric mean of speed factors

	WL_1		WL_2		WL_n		Score	S(A,B)
Ref. Srv	m₁(ref)	1 (by def)	m ₂ (ref)	1 (by def)	m _n (ref)	1 (by def)	$\left(\prod_{i=1}^n x_i\right)^{\overline{n}}$	
Srv A	$m_1(A)$	x_1 (A,ref)	m ₂ (A)	x_2 (A,ref)	m _n (A)	$x_n(A,ref)$	S(A,ref)	S(A, ref)
Srv B	m ₁ (B)	x_1 (B,ref)	m ₂ (B)	x_2 (B,ref)	m _n (B)	$x_n(B,ref)$	S(B,ref)	$\overline{S(B,ref)}$

File:201912 Rack-optimised servers.svg" by DataBase Center for Life Science (DBCLS) is licensed under CC BY 4.0