

HARRY

Aggregate hardware usage metrics to optimise procurement of computing resources

Hervé Rousseau — CERN IT/CF-FPP

Introduction

Technical architecture

Examples

Goals

- Assist CERN's IT/CF teams for adequate sizing of hardware and infrastructure
- Have a long term view (\geq 5 years) of hardware resources usage
- Ultimate goal: better resource acquisition and allocation process

Data needed (1)

Data

- CPU utilisation (all modes)
- Memory utilisation
- Disk I/O & storage (lower resolution)
- Network utilisation

Data needed (2)

Tags/Attributes

- Hostgroup (pprox Cluster)
- Location (Room and rack)
- IP Service (pprox Network "domain")
- Purchase Order

Interlude

Wait a minute... we already have all this data !

- Yes, the raw data is here...
- but grouping by tags/attributes is not possible
- and displaying it is not visually attractive.

Interlude

Hey, but we already have all this data !

Figure: CPU Idle time on 7934 servers

March 17, 2021

8

Introduction

Technical architecture

Examples

HARRY: Software used

On servers

hw_exporter: exposes metrics and (optionally) tags

Data collection, aggregation and archival

- Tool to query PuppetDB (CERN specific)^a
- Prometheus
- Thanos

^aOnly custom development on this project

HARRY: Architecture

March 17, 2021

HARRY: On servers

hw_exporter instantiation:

```
class hardware::include::hw_exporter (
  # Values set in module-level hiera data
  Array[Stdlib::Host] $collectors = [],
  Optional[Integer[1, 65535]] $port = 4242,
  Optional[Boolean] $enabled = !$::facts['is_virtual'],
  Optional[Boolean] $open_firewall = str2bool($::writefirewall),
```


HARRY: Data flow

CERN

Introduction

Technical architecture

Examples

CPU Idle time (on 7934 servers)

CPU Idle time (on 7934 servers)

Cluster with high network throughput requirements

Request for high-IOPS NVMe storage

SSDs estimated life left per purchase order

SSDs estimated life left drill-down

HARRY: Troubleshooting tool

Datacentre-wide network outage

	TCP Checks	im errors per	IP service ((top 15)		
S513-V-IP632			2.56 kpps			
<u>\$513-V-IP634</u>			1.61 kpps			
S513-C-IP	0.14 pps					
S513-A-IP40			0.08 pps			
S513-C-IP351			0.01 pps			
S513-A-IP63			0.00 pps			
S513-V-IP828			0.00 pps			
S513-C-IP735			0 pps			
<u>8773-C-IP101</u>			0 pps			
					~	
 Plots (slow: select IP Service first) 						
TCP Checksum errors						
2.0 kops						
					n.	
				p		
				10.00	10:30	

Next steps

- Delegate long-term storage to Central Monitoring
- Deprecate old home-made tools in favor of HARRY

Thank you

www.cern.ch

Links

- PuppetDB Query API v4
- Node Exporter
- Prometheus
- Thanos
- MONIT Documentation

HARRY Resources

Computing resources

Quantity	Usage	Specs
3 ^a	Collector	64 GB of RAM, 16 vCPU VMs
1	Aggregation	32 GB of RAM, 16 vCPU VMs

^aOne per availability zone

Storage resources

• Storage space usage: 1.6 TB ^a

 a Assuming Gorilla-style double delta encoding. Raw space usage: 4.1 TB

