
M. BÖHLER1, R. CASPART2, M. FISCHER2,

O. FREYERMUTH3, M. GIFFELS2, S. KROBOTH1, E. KÜHN2,

M. SCHNEPF2, F. VON CUBE2, P. WIENEMANN3

1UNIVERSITY OF FREIBURG
2KARLSRUHE INSTITUTE OF TECHNOLOGY
3UNIVERSITY OF BONN

DYNAMIC INTEGRATION OF

OPPORTUNISTIC COMPUTE

RESOURCES

Peter Wienemann: Dynamic Integration of Opportunistic Compute Resources 2

● Computing demands by HL-LHC are likely beyond what can be provided by dedicated resources
(even if performance/price evolution is taken into account)

● Multiple approaches to address challenge

– Temporarily use non-dedicated resources
(HPC/HTC clusters, cloud resources,
container orchestration suites, ...)

– Improve software/algorithms/
computing models

– Investigate new technologies
(quantum computing, ...)

– etc.

OPPORTUNISTIC RESOURCES

Source: https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ComputingandSoftwarePublicResults

Peter Wienemann: Dynamic Integration of Opportunistic Compute Resources 3

THE CHALLENGE

HPC/HTC cluster

Cloud resources

Container orchestrator

Pile of jobs ?
HPC/HTC cluster

Peter Wienemann: Dynamic Integration of Opportunistic Compute Resources 4

THE CHALLENGE (CONT‘D)

Computing Operations Team
(monitoring and troubleshooting)

Site Operators
(large, diverse infrastructure,

many different contacts)

Peter Wienemann: Dynamic Integration of Opportunistic Compute Resources 5

COBALD/TARDIS APPROACH

● Add abstraction layer between resource users and resource providers

● Hide heterogenous resources behind a single point of entry

● COBalD (COBalD – the Opportunistic Balancing Daemon)

– Monitors usage of booked resources

– Ramps up booked resources if they are well utilised

– Reduces booked resources if they remain unused

● TARDIS (Transparent Adaptive Resource Dynamic Integration System)

– Implements integration and management of resources provided by different systems (currently supported:
OpenStack, CloudStack, Moab, Slurm, HTCondor, soon: Kubernetes) into overlay batch system (OBS)

● Available at https://matterminers.github.io,
developed at KIT (M. Fischer, M. Giffels, E. Kühn, M. Schnepf, et al.)

Peter Wienemann: Dynamic Integration of Opportunistic Compute Resources 6

COBALD/TARDIS APPROACH (CONT‘D)

Source: M. Böhler et al., Transparent Integration of Opportunistic Resources into the WLCG Compute Infrastructure, submitted to CHEP 2021

COBalD/TARDIS interfaces overlay batch system (OBS) with local resource management systems

HTCondor-CE
cloud-htcondor-ce-1-kit

HTCondor
OBSGridKa

Single Point of Entry

Bonn Tier 3
(BAF)

KIT HPC
(FORHLR2)

KIT Tier 3
(TOPAS)

LMU Munich
OpenStack

Bonn HPC
(BONNA)

Peter Wienemann: Dynamic Integration of Opportunistic Compute Resources 7

PILOTS AND DRONES

● Pilot = „Empty“ job skeleton which allocates resources (# cores, RAM, etc.)

– E. g. ATLAS pilot: Also transfers input/output, pulls in payload when CPU
becomes available (reduces latency)

● Drone = Generalized pilot started by TARDIS

– Starts HTCondor execute daemons

– Provides software environment

– Integrates/removes resources into/from overlay batch system (OBS)

Peter Wienemann: Dynamic Integration of Opportunistic Compute Resources 8

COBALD/TARDIS SETUP FOR BAF CLUSTER

HTCondor OBS @ GridKa
(fed by HTCondor CE)

COBalD/TARDIS @ U BN

BAF HTC Cluster @ U BN

Kerberos auth.

GSI auth.

GSI auth.

Pilots run in dronesPilots

Monitors drone usage
(OBS) and drone status
(LRMS)

Request and stop drones

Peter Wienemann: Dynamic Integration of Opportunistic Compute Resources 9

SETUP FOR FORHLR II AND BONNA

HTCondor OBS @ GridKa
(fed by HTCondor CE)

COBalD/TARDIS

ForHLR II/Bonna HPC Clus.

ssh auth.

GSI auth.

GSI auth.

Pilots run in dronesPilots

Monitors drone usage
(OBS) and drone status
(LRMS)

Request and stop drones

Peter Wienemann: Dynamic Integration of Opportunistic Compute Resources 10

COBALD/TARDIS OPERATION

● Extremely lightweight compared to running grid compute element

● Only one instance per OBS needed. Still it turned out to be convenient to run an instance/service per resource
provider (may run on the same host). May be run by OBS operator, resource provider or third party (depending on
preferences).

● Configuration options to define

– Metric to measure utilization (e. g. used/allocated CPU or memory)

– When and how to start/stop new drones

– Drone properties (e. g. # cores, memory, disk, lifetime [when draining should be triggered])

– General settings like logging, etc.

● Shared port daemon needs to be reachable from drones to allow for draining

● Puppet module to automize setup: https://github.com/unibonn/puppet-cobald

Peter Wienemann: Dynamic Integration of Opportunistic Compute Resources 11

DRONE LIFECYCLE EXAMPLES

TOPAS and BAF

COBalD/TARDIS instance
submits drone job via
condor_submit to
HTCondor

ForHLR II and Bonna

COBalD/TARDIS instance
submits drone job via
ssh to Slurm

HTCondor launches drone
container from CVMFS
with /cvmfs
bind-mounted

Slurm job calls cvmfsexec
to launch drone container
from CVMFS with /cvmfs
bind-mounted

Drone starts HTCondor
execute node daemons,
attaches to OBS, waits
for payload from OBS

Drone is stopped
if unused

Drone is drained
if utilization is low or
lifetime exceeds limit

Drone is running payload
received from OBS

Peter Wienemann: Dynamic Integration of Opportunistic Compute Resources 12

CVMFSEXEC

● cvmfsexec: Tool to mount CVMFS repositories as unprivileged user
(written by Dave Dykstra, FNAL)

● Prerequisites*:

– Either user namespaces and unprivileged namespace FUSE mounts
(>= CentOS 7.8 or kernel >=4.18)

– Or user namespaces and fusermount available

● Creates mount namespace to provide CVMFS repositories via /cvmfs mount point and
runs given command in this namespace. If unprivileged namespace FUSE mounts are
available, mounts are performed in additional process ID namespace such that kernel
takes care of cleaning up mounts on process termination.

*There are more, less elegant options: See https://github.com/cvmfs/cvmfsexec for details.

Peter Wienemann: Dynamic Integration of Opportunistic Compute Resources 13

EXAMPLE JOB STRUCTURE

Batch job

Drone container

TARDIS drone

ATLAS pilot

ATLAS container

ATLAS payload

● Nested structure

● Containers to provide a common
baseline environment for drones

● ATLAS containers to reduce site
requirements (convenient for
ATLAS)

● ATLAS pilots to improve
throughput of ATLAS production
system

Peter Wienemann: Dynamic Integration of Opportunistic Compute Resources 14

OPPORTUNISTIC RESOURCE USAGE IN DE

03-04 03-05 03-06 03-07 03-08 03-09 03-10
Date (in 2021)

0

1000

2000

3000

4000

5000

6000

N
um

be
r o

f U
se

d
C

or
es

 (s
ta

ck
ed

)

Clusters
ForHLR II (Karlsruhe)
LRZ (Munich)
TOPAS (Karlsruhe)
BAF (Bonn)
Bonna (Bonn)

Peter Wienemann: Dynamic Integration of Opportunistic Compute Resources 15

OPERATING MODELS

● Steady state

– Provide a relatively small amount of resources continuously

● Backfilling with preemption (checkpoint, suspend or kill jobs)

– Provide a substantial amount of resources if unused otherwise

– Preempt jobs when slots are requested by local users

– Either jobs still consume some types of resources (e. g. disk space, RAM) or payload is aborted

● Backfilling with graceful draining

– Provide a substantial amount of resources if unused otherwise

– Start draining early to ensure a continuous flow of slots becoming available for local users

– Payload finishes successfully

Peter Wienemann: Dynamic Integration of Opportunistic Compute Resources 16

„CONTINUOUS“ DRAINING

BAF cluster
ATLAS drones
draining starts after 12 h latest

draining

busy

draining

n
u

m
b

er
 o

f
cl

ai
m

ed
 c

o
re

s

time

Peter Wienemann: Dynamic Integration of Opportunistic Compute Resources 17

SUMMARY

● COBalD/TARDIS manages diverse opportunistic resources in a unifom way

● Concept successfully employed in production at a national scale

● Provided opportunistic resources provided by 5 sites in H2 2020 in the order of
an average German university tier 2 centre

● Opportunistic resource usage harmonizes well with usage by local users

● For larger resource providers the network throughput during stage-in and stage-
out phase of jobs can be sizable (at least for ATLAS and Belle jobs)

● More sites are welcome to join the club :-)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

