
Introduction Networking Batch spawner Setup Future

Unchaining JupyterHub
Running notebooks on resources without inbound

connectivity

Oliver Freyermuth, Katrin Kohl, Peter Wienemann

University of Bonn
{freyermuth,kohl,wienemann}@physik.uni-bonn.de

16th March, 2021

1/ 19

mailto:freyermuth@physik.uni-bonn.de,kohl@physik.uni-bonn.de,wienemann@physik.uni-bonn.de

Introduction Networking Batch spawner Setup Future Why JupyterHub? Operation

Why JupyterHub?
JuypterHub is a web ‘hub’ providing access to notebooks
Notebooks can use various kernels (Python 2/3, R, Julia,
ROOT / C++,. . .)
Interactive graphics, terminals, X11 via XPRA / noVNC,. . .
Collaborative work possible (shared filesystems, git. . .)

In summary. . .
JupyterHub allows interactive work from a browser, without
installing software locally.

Use cases
Rapid prototyping / ‘Trying things out’
Teaching (algorithms, methods)
Sharing of small analyses (self-documenting)
Remote work (with notebooks / remote desktop in browser)

2/ 19

Introduction Networking Batch spawner Setup Future Why JupyterHub? Operation

An example workspace

3/ 19

Introduction Networking Batch spawner Setup Future Why JupyterHub? Operation

Operational hurdles

Commonly operated on dedicated cloud infrastructure (e.g.
Kubernetes)) Typically runs in different environment than
other scientific use cases
Combines a plethora of versions and packaging systems (pip,
conda, npm, yarn, . . .) ! Upgrade headache
Very active development with breaking changes
In many cases problematic security concepts (e.g. Hub server
needs direct access to execute nodes)
Operationally, a Hub is ‘chained’ to the resource admins
(note this also prevents safe use of distributed / federated resources)

Can we overcome some of these?
Let us investigate JupyterHub networking!

4/ 19

Introduction Networking Batch spawner Setup Future JupyterHub HTCondor

Networking with JupyterHub

JupyterHub (may be reachable world-wide)

User with
web browser

https
Configurable HTTP Proxy

Hub

/hub/

- AuthN/Z
- Spawning Notebook/api/auth

/user/[name]/

5/ 19

Introduction Networking Batch spawner Setup Future JupyterHub HTCondor

Networking with JupyterHub

JupyterHub (may be reachable world-wide)

User with
web browser

https
Configurable HTTP Proxy

Hub

/hub/

- AuthN/Z
- Spawning

HTC/HPC Cluster (NAT, isolated)
(local or remote)

Notebook
- as compute job
- containerized
- access to special
 resources (GPUs, parallel FS)

/user/[name]/

/api/auth ?

5/ 19

Introduction Networking Batch spawner Setup Future JupyterHub HTCondor

Networking with JupyterHub

The inbound connection to the notebook will use a random
port, defined by the spawned notebook
The (potentially world-reachable) Hub needs direct access to
the execute node
Additionally, no / reduced firewalling on the execute node
possible (random ports)

Can we overcome this issue?
How do workload management systems work with NATed execute
nodes. . . ?

6/ 19

Introduction Networking Batch spawner Setup Future JupyterHub HTCondor

Networking with HTCondor (simplified)

HTCondor execute
& submit node(s)
keep connection to CCB

HTCondor
Submit Node

HTC/HPC Cluster (NAT, isolated)
(local or remote)

HTCondor
Central Manager & CCB

Bidirectional connection
established

Startd service on
execute node
contacts submit node
on request relayed
via CCB

Note:
Via the shared port daemon,
only a single port needs to be open
on the submit node and CCB node

7/ 19

Introduction Networking Batch spawner Setup Future JupyterHub HTCondor

Networking with HTCondor (simplified)
CCB (HTCondor Connection Brokering) allows submit node to
connect to execute node by leveraging a reverse connection
This works both for daemon communication and command line
tools
It overcomes the common case of isolated execute nodes
Notably, it also works for condor_ssh_to_job
Regular HTCondor AuthN/Z applies first
For SSH, a temporary pair of keys is used
That means we can SSH into any worker node which has
outbound connectivity, even without inbound connectivity

Can we forward the port of the notebook via an SSH tunnel?
Manual testing: Yes!
But: Batch spawner needs to be extended.

8/ 19

Introduction Networking Batch spawner Setup Future Concept Implementation

JupyterHub Batch spawner

Concept
1 A job is submitted to the batch system (‘spawning’)
2 JupyterHub monitors the state of the job
3 Payload starts (single user notebook): random listen port
4 Payload contacts JupyterHub Server (fixed API port),

communicates the random port on the execute node
5 Classically: JupyterHub tells ‘configurable HTTP proxy’ to

proxy the user directly to the random port on the execute node

JupyterHub batch spawner needs to be extended
1 Add a generic, optional ‘connect to job’ functionality
2 In case of HTCondor, leverage condor_ssh_to_job to

forward the port to localhost on the Hub

9/ 19

Introduction Networking Batch spawner Setup Future Concept Implementation

JupyterHub Batch spawner

Our generic implementation
1 Payload has communicated random port (startup finished)
2 If required for the ‘connect to job’ command:

1 JupyterHub selects an unused, local random port
2 Remote and local port passed to the ‘connect to job’ command

This allows to forward from the remote port to an unused,
randomized local port

3 ‘connect to job’ command is called as background command
4 Aborted if ‘connect to job’ exits during startup
5 Job killed if connection is lost during session

For CondorSpawner

use condor_ssh_to_job with
-oExitOnForwardFailure=yes

override notebook hostname with localhost
10/ 19

Introduction Networking Batch spawner Setup Future Concept Implementation

JupyterHub Batch spawner

How to use the implementation?
Full implementation in this pull request (awaiting review):
https://github.com/jupyterhub/batchspawner/pull/200

For maximum profit, an HTCondor setup with CCB and shared
port configuration is needed
For other batch systems: start from generic implementation
added to the Batch spawner

We’re not aware of built-in functionality as in HTCondor
Requirement: some command to establish the connection
(like ssh, e.g. via a bastion host)

We are still in the pilot operation phase.
A few more details on the components we use. . .

11/ 19

https://github.com/jupyterhub/batchspawner/pull/200

Introduction Networking Batch spawner Setup Future Components Schematic

Components of our setup
Deployment and configuration with Foreman / Puppet for
cluster, desktops, servers and services (!HEPiX Autumn 2019)

Desktops are submit nodes, allow interactive jobs with X11
All jobs executed in containers
Infrastructure using a mix of CentOS 7 and 8
Desktops with Ubuntu 18.04 ! Debian 11
CephFS as cluster file system (can optionally be used in
JupyterHub) (!HEPiX Autumn 2019)

For JupyterHub. . .
Puppetized VM setting up the Hub web service
Regular containers extended with a VirtualEnv & Lab
extensions, based on Anaconda, activated via Lmod
Plan to build environments via automated workflows (CI/CD)
Distributed via CVMFS

12/ 19

https://indico.cern.ch/event/810635/contributions/3592911/
https://indico.cern.ch/event/810635/contributions/3592916/
https://github.com/TACC/Lmod
https://cernvm.cern.ch/fs/

Introduction Networking Batch spawner Setup Future Components Schematic

Components of our setup

Authentication
Login to the hub creates a Kerberos TGT (via PAM)
Kerberos used for job submission (and inter-daemon
communication with HTCondor)
However: not a requirement (tokens on the horizon)

File system decoupled
Users have kerberized home directories on NFS, mounted on
the Hub, but not on cluster nodes
HTCondor file transfer used to transfer a �/jupyter directory
into the job and back when job exits:

when_to_transfer_output = ON_EXIT_OR_EVICT
+SpoolOnEvict = False

13/ 19

Introduction Networking Batch spawner Setup Future Components Schematic

Overall schematic

HTCondor execute & submit node(s) keep connection to CCB

HTCondor submit node

HTC/HPC Cluster (NAT, isolated)
(local or remote)

HTCondor
Central Manager & CCB

Bidirectional connection established => SSH tunnel

Startd service on execute node contacts submit node on request
relayed via CCB

Hub

Configurable
HTTP Proxy

User with web browser

https + WebSockets

Apache2 (SSL)

Jupyter Single User Notebook API call

http + WebSockets
Single User Notebook

(spawned, random port)

Hub
WN

14/ 19

Introduction Networking Batch spawner Setup Future Components Schematic

Overall schematic

HTCondor execute & submit node(s) keep connection to CCB

HTCondor submit node

HTC/HPC Cluster (NAT, isolated)
(local or remote)

HTCondor
Central Manager & CCB

Bidirectional connection established => SSH tunnel

Startd service on execute node contacts submit node on request
relayed via CCB

Hub

Configurable
HTTP Proxy

User with web browser

https + WebSockets

Apache2 (SSL)

Jupyter Single User Notebook API call

http + WebSockets
Single User Notebook

(spawned, random port)

Hub
WN

XPRA

RStudio

Theia
jupyter-
server-
proxy

14/ 19

Introduction Networking Batch spawner Setup Future Components Schematic

Other Web Services

Adding a proxy to the notebook
jupyter-server-proxy extension adds another proxy layer (HTTP
/ WebSockets) inside single user notebooks
Single point of entry to notebook remains one port (i.e. our
SSH tunnel)
Proxying is done after authentication
Allows to access tools external to JupyterLab, for example:

X11 desktop (e.g. via XPRA) via jupyter-xprahtml5-proxy
Tools with HTML5 frontends (RStudio, Theia,. . .)

Note: Secure authentication should happen on shared nodes!

15/ 19

https://github.com/jupyterhub/jupyter-server-proxy
https://github.com/FZJ-JSC/jupyter-xprahtml5-proxy

Introduction Networking Batch spawner Setup Future Components Schematic

Overall schematic

HTCondor execute & submit node(s) keep connection to CCB

HTCondor submit node

HTC/HPC Cluster (NAT, isolated)
(local or remote)

HTCondor
Central Manager & CCB

Bidirectional connection established => SSH tunnel

Startd service on execute node contacts submit node on request
relayed via CCB

Hub

Configurable
HTTP Proxy

User with web browser

https + WebSockets

Apache2 (SSL)

Jupyter Single User Notebook API call

http + WebSockets
Single User Notebook

(spawned, random port)

Hub
WN

XPRA

RStudio

Theia
jupyter-
server-
proxy

16/ 19

Introduction Networking Batch spawner Setup Future Components Schematic

X11 applications in your browser

17/ 19

Introduction Networking Batch spawner Setup Future Scaling Summary & Outlook

Scaling out

Resource Federations
Overlay batch systems can be used with this implementation
JupyterHub Unchained: Resources can be used without
privileges and without dropping the firewalls
Allows for use in a federated research platform

Components for scaling out
HTCondor (flexible scheduling, file transfer functionality)
CVMFS for software stack and container images
Containerization (possibility to use user namespaces)
COBalD/TARDIS to spawn resources for an overlay batch
system

) For more details, stay for the next talk!

18/ 19

https://matterminers.github.io/
https://indico.cern.ch/event/995485/contributions/4263420/

Introduction Networking Batch spawner Setup Future Scaling Summary & Outlook

Summary & Outlook

Summary
JupyterHub Batch spawner extended to remove need for
inbound connectivity
Highly portable notebook environment (containerized, can
spawn on almost any HPC / HTC resource)
Now collecting experiences in pilot operation phase

Outlook
Use CI/CD to build notebook environment
Extend functionality (e.g. offer HTMap)
Test scaling out to other resources

19/ 19

https://github.com/htcondor/htmap

Thank you

for your attention!

	Introduction
	Why JupyterHub?
	Operation

	Networking
	JupyterHub
	HTCondor

	Batch spawner
	Concept
	Implementation

	Setup
	Components
	Schematic

	Future
	Scaling
	Summary & Outlook

	Appendix

