Setting up a PGPool Il Cluster

Oliver Freyermuth'
Michael Hibner!
Peter Wienemann?

'Physikalisches Institut, Universitat Bonn

HEPIX 2021

Our Use-Case L

UNIVERSITAT

* Monitoring of institute machines (office, server
room, printers, environment,...) using Zabbix

- PostgreSQL database

- Data kept for several years

* Different granularity for different time scales (more finely
for recent data, only trends for older data)

Requirements of the Setup e

UNIVERSITAT

* Continuous monitoring

- Highly avalilable such that database is always
reachable

- Redundancy in case of backend failure

- Minimal downtimes (e.g. during planned maintenances,
failure of systems,...)

* Easily recoverable
- Backups

The Setup - Backends vV

UNIVERSITAT ERIY

Client

r< read/write queries >

PostgreSQL Backends vV

UNIVERSITAT

* Open Source database solution (BSD license)
- Object-relational database management system
- Long history of active development (30+ years)
- Extensions
- ACID (atomicity, consistency, isolation, durability) compliant

* Most important features for our (server) setup
— Streaming replication: continuous WAL archiving

— Authentification methods (pg_hba.conf)

* SSL encrypted connection using password authentication (MD5 hashes) between
backends and for communication with PGPool II-Frontend

PostgreSQL Backends vV

UNIVERSITAT

* Puppet module:
https://github.com/puppetlabs/puppetlabs-postgresql

- Automatic installation
- Handling of configs, firewall, etc.
- EXxplicitly no automatic start of the daemon!

* Does not provide
— Handling of failover
- Load balancing

https://github.com/puppetlabs/puppetlabs-postgresql

The Setup - Frontend vV

UNIVERSITAT ELINY

Client

r< read/write querie

Streaming
replication

|-

PGPool Il Frontend L

UNIVERSITAT

* Open Source middleware between clients and PostgreSQL servers (BSD license)

* What does it provide for our setup?

— Authentification (pgpool.hba): Client - PGpool Il - PostgreSQL backends
* Password authentication + SSL encrypted connection
* Same credentials are passed on to backends

- Watchdog: steady health check of system

- Automatic failover routines
* Automatic triggers
* Executes scripts one has to provide

- Load balancing (only for read queries)
* Puppet: https://github.com/mwhahaha/puppet-pgpool

- Somewhat actively maintained

- Our PR was merged pretty fast (https://github.com/mwhahaha/augeas-pgpool/pull/2)
* PGPool sometimes changes naming schemes and allowed values, so it does need active maintenance

PGPool Il Frontend - Authentication P&

UNIVERSITAT ERIY

o @ @ hitps:ivwar. pgpool.net/docslatest/en/html/client-authentication. htm| B | e ¥ Q suchen &I @ ¢

pgpool-ll 4.2.2 Documentation

=
@
=

Prev Up

Chapter 6. Client Authentication

Table of Contents.
6.1. The poo1_nba.cont File
6.2. Authentication Methods
2.1. Trust Authentication
6.2.2. MD5 Password Authentication
6.2.3. scral 256 Authentication
6.2.4. Certificate Authentication
6.2.5. PAM Authentication
6.2.6. LDAP Authentication
6.2.7. GSSAPI Authentication
6.3. Using different methods for frontend and backend authentication
6.4. Using AES256 encrypted passwords in pool_passwd
6.4.1. Creating encrypted password eniries
6.4.2. Providing decryption key to Pgpool-Il

Since Pgpool-Il is a middleware that works between PostgreSQL servers and a PostgreSQL database client, so when a client application connects to the Pgpool-Il, Pgpool-Il in turn connects to the PostgreSQL servers using the same
credentials to serve the incoming client connection. Thus, all the access privileges and restrictions defined for the user in PostgreSQL gets automatically applied to all Pgpool-Il clients, with an exceptions of the authentications on PostgreSQL

m%m names. Reason being the connections to the PostgreSQL server are made by Pgpoal-Il on behalf of the connecting clients and PostgreSQL server can only see the IP address of the
Pgpool-1l server and not that of the actual client. Therefore, for the client host based authentications Pgpool-l has the poo1_nba mechanism similar to the pg_nba mechanism for authenticating the incoming client connections.

Prev Home INext
Misc Configuration Parameters Up The pool_nba.conf File
o @ | @ https:iwww pgpool.net/docs/latesten/htmliauth-methods. htm#AUTH-CERT B | »- ™ | | Q. suchen ® IInE

6.2.4. Certificate Authentication

This authentication method uses sst client certificates to perform authentication. It is therefore only available for SSL connections. When using this authentication method, the Pgpool-1l will require that the client provide a valid certificate. No
password prompt will be sent to the client. The cn (Common Name) attribute of the certificate will be compared to the requested database user name, and if they match the login will be allowed.

Note: The certificate authentication works between only client and Pgpool-Il. The certificate
authentication does not work between Pgpool-1l and PostgreSQL. For backend authentication you
can use any other authentication method.

Health Checking Vv

UNIVERSITAT ERIY

 Dedicated health check user
- Steered by PGPool frontend
- Connects to PostgreSQL backends (template table in
postgres DB)
« Set up on PostgreSQL backends
- Create health check user with corresponding role
— Allow connection in pg_hba.conf

e Set up on PGPool frontend
- Configure health check user and password

- Important parameters
* health_check_period: interval between checks in seconds
* health_check_timeout: timeout in seconds
* health_check_max_retries: maximum number of retries before
failover
* health_check_retry_delay: interval between failed checks in
seconds

Health Checking Vv

UNIVERSITAT ERIY

e Important to choose parameters carefully

* Observations during commissioning

- Sometimes PGPool marks backends as ,down’
even if they are healthy

- Explanation: DNS lookup took too long — with
given health check parameters, health check
failed —» node unhealthy (marked as down)

 Solution
- Local DNS caching

- Increase grace period before health check
triggers (8*(20+5) = 200 s)
* health_check_period =5
* health_check_timeout = 20
* health_check_max_retries = 8
* health_check _retry delay =5

PGPool Il Frontend - Scripts vV

UNIVERSITAT ERIY

* Failover (on Frontend)
- Connect to new master Failover

- Promote PostgreSQL instance to
primary

- Create replication slot
* Online recovery (on Frontend)

- Connect to node that needs recovery
— Stop PostgreSQL instance

- Recover from primary using
pg_rewind

— Create recovery.conf
* PgBackRest information
* Set node to Standby

- Start PostgreSQL instance

PGPool Il Frontend - Scripts vV

UNIVERSITAT ERIY

* Failover (on Frontend)

- Connect to new master Online recovery

- Promote PostgreSQL instance to
primary

~ Down
- Create replication slot (
* Online recovery (on Frontend) ’
- Connect to node that needs recovery
— Stop PostgreSQL instance N
- Recover from primary using A Eriman
pg_rewind @

— Create recovery.conf
* PgBackRest information
* Set node to Standby

- Start PostgreSQL instance

>

The Setup - Backup Vv

UNIVERSITAT ELINY

Client = N
~_
r< read/write queries - gcz:

Streaming
replication

-

pgBackRest Vv

UNIVERSITAT ERIY

« Open source backup solution for PostgreSQL (MIT license) if (PGPool is not running):

« What does it provide? i exit)
- Full, differential, incremental backups C ange to user ,postgres
. . If (all backends up):
Retention options

if (cannot ping stan :
Compressed and encrypted (Cannot ping standby)

send alert mail
S3 backend backup

exit
* Setup ssh to standby
— Backup run per cronjob on frontend run backup
* 1x full backup per week It (error during backup):
* 6x incremental backups per week send alert mail
- Retention exit
* 12 full backups (3 months) else:
» 32 incremental backups (includes full backups in count - 4 weeks) Iog error
exit

The Full Setup L

UNIVERSITAT ELINY

Client

r< read/write queries >

Streaming
replication

General Functionality Tests vV

UNIVERSITAT

e Cluster status

p

e Failover

* Currently testing upgrades

e Pitfalls encountered when

- Attaching a node (never really need to do this by hand)

- Promote a node to primary (never really need to do this by
hand)

Resource Usage e

UNIVERSITAT

* ldea: test performance of setup when importing Zabbix database

* Setup
- Frontend installed on VM
- Backends installed on baremetal machines

* Scenarios
- Test 1: Frontend on AMD based hypervisor node in different building
- Test 2: Frontend on local Intel based hypervisor node
— Test 3: Frontend on local AMD based hypervisor node

e Questions to answer
- Does latency matter (on our scale)?
- What are limiting factors?

Resource Usage

Vv

UNIVERSITAT

e Scenarios

— Test 1: Frontend on AMD based hypervisor
node in different building

- Test 2: Frontend on local Intel based hypervisor
node

- Test 3: Frontend on local AMD based
hypervisor node

 What we can learn

- Latency does not impact performance at our
scale
— Single core perfomance matters

* Older AMD hypervisor do not offer hardware
support for SSL algorithms — saturation on frontend

* Newer Intel hypervisor does offer hardware support
- Saturation on backends

Test 1 Test 2 | Test 3

CPU utilization (1h)

last min avg max
[CPU idle time [avg] 57.38 Y 3147 % 7851% 9981 %
W CPU user time [avg] 3.86 Y 0.03 % 519 % 295 %
B CPU system time [avg] 27.21 0.08% 1437% 4722%
[l CPU iowait time [avg] 0.22 % 0% 0.39 % 5.24 %
B CPU nice time [avg] [0% 0 % 0%
M CPU interrupt time [avg] 0 % 0% 0% 0%
[CPU softirg time [avg] 4.44 o 0.05 % 148 % 7.19 %
[CPU steal time [avg] 0.0086 % 0% 0.02 % 013 %
vork traffic on etho (1h)
'
last min avg max

M Outgoing network traffic on etho [avg] 7.38 MBps

M Incoming network traffic on eth0 [avg]l 3.32 MBps 19.05KBps 2.06 MBps 7.89 MBps

360 Bps 417 MBps 1353 MBps

Disaster Dirill L

UNIVERSITAT

* Scenario: complete loss of both backends

e Strategy
- Stop PGPool on frontend (if not broken as well)
- Reinstall backend nodes using puppet
* PostgreSQL instances will not be running

- Restore database on one node using pgBackRest
* Run puppet once to create directory structure first

- Start frontend
* Restored backend node will become primary

- Recover second backend node using PGPool
« |f difficulties arise - manual recovery with pg_basebackup

Outlook: TimescaleDB L

UNIVERSITAT

* Extension for PostgreSQL (TSL license)

— Can use all community features for free unless hosted as a Database-as-
a-Service

* Provides very effective compression for time-series databases
(,94% - 97% compression rates”)

— Zabbix database is a perfect candidate
— Monitoring is effectively time-series with one number per point in time
 Compression achieved via delta-delta encoding

- Delta encoding: only store change w.r.t. previous data point
- Delta-delta encoding: apply delta encoding on delta encoded data

Summary & Outlook L

UNIVERSITAT ERIY

* Summary

— Introduced PGPool cluster setup to
be used for Zabbix monitoring

- Highlighted some of the most -
important features and pitfalls . / \
r U i
* QOutlook /

- Test updates/upgrades of setup, e.g.
PostgreSQL version upgrade 11 -
12

— Activate TimescaleDB for Zabbix
database

Vv

UNIVERSITAT ERIY

Backup

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23

