
Setting up a PGPool II Cluster

Oliver Freyermuth1

Michael Hübner1

Peter Wienemann1

1Physikalisches Institut, Universität Bonn

HEPiX 2021



18.03.21 Michael Hübner 2

Our Use-Case

● Monitoring of institute machines (office, server 
room, printers, environment,...) using Zabbix
– PostgreSQL database
– Data kept for several years

● Different granularity for different time scales (more finely 
for recent data, only trends for older data)



18.03.21 Michael Hübner 3

Requirements of the Setup

● Continuous monitoring
– Highly available such that database is always 

reachable
– Redundancy in case of backend failure
– Minimal downtimes (e.g. during planned maintenances, 

failure of systems,...)

● Easily recoverable
– Backups



18.03.21 Michael Hübner 4

The Setup - Backends

pgBackRest

Client

read/write queries read/w
rite

 querie
s

read queries

S
tr

ea
m

in
g

re
pl

ic
at

io
n

Primary

Standby



18.03.21 Michael Hübner 5

PostgreSQL Backends
● Open Source database solution (BSD license)

– Object-relational database management system
– Long history of active development (30+ years)
– Extensions
– ACID (atomicity, consistency, isolation, durability) compliant

● Most important features for our (server) setup
– Streaming replication: continuous WAL archiving
– Authentification methods (pg_hba.conf)

● SSL encrypted connection using password authentication (MD5 hashes) between 
backends and for communication with PGPool II-Frontend



18.03.21 Michael Hübner 6

PostgreSQL Backends

● Puppet module: 
https://github.com/puppetlabs/puppetlabs-postgresql
– Automatic installation
– Handling of configs, firewall, etc.
– Explicitly no automatic start of the daemon!

● Does not provide
– Handling of failover
– Load balancing

https://github.com/puppetlabs/puppetlabs-postgresql


18.03.21 Michael Hübner 7

The Setup - Frontend

pgBackRest

Client

read/write queries read/w
rite

 querie
s

read queries

S
tr

ea
m

in
g

re
pl

ic
at

io
n

Primary

Standby



18.03.21 Michael Hübner 8

PGPool II Frontend
● Open Source middleware between clients and PostgreSQL servers (BSD license)
● What does it provide for our setup?

– Authentification (pgpool.hba): Client ↔ PGpool II ↔ PostgreSQL backends
● Password authentication + SSL encrypted connection
● Same credentials are passed on to backends

– Watchdog: steady health check of system
– Automatic failover routines

● Automatic triggers
● Executes scripts one has to provide

– Load balancing (only for read queries)

● Puppet: https://github.com/mwhahaha/puppet-pgpool
– Somewhat actively maintained
– Our PR was merged pretty fast (https://github.com/mwhahaha/augeas-pgpool/pull/2)

● PGPool sometimes changes naming schemes and allowed values, so it does need active maintenance



18.03.21 Michael Hübner 9

PGPool II Frontend - Authentication



18.03.21 Michael Hübner 10

Health Checking
● Dedicated health check user

– Steered by PGPool frontend
– Connects to PostgreSQL backends (template table in 

postgres DB)

● Set up on PostgreSQL backends
– Create health check user with corresponding role
– Allow connection in pg_hba.conf

● Set up on PGPool frontend
– Configure health check user and password
– Important parameters

● health_check_period: interval between checks in seconds
● health_check_timeout: timeout in seconds
● health_check_max_retries: maximum number of retries before 

failover
● health_check_retry_delay: interval between failed checks in 

seconds

Primary

Standby



18.03.21 Michael Hübner 11

Health Checking
● Important to choose parameters carefully
● Observations during commissioning

– Sometimes PGPool marks backends as ‚down‘ 
even if they are healthy

– Explanation: DNS lookup took too long → with 
given health check parameters, health check 
failed → node unhealthy (marked as down)

● Solution
– Local DNS caching
– Increase grace period before health check 

triggers (8*(20+5) = 200 s)
● health_check_period = 5
● health_check_timeout = 20
● health_check_max_retries = 8
● health_check_retry_delay = 5

Primary

Standby



18.03.21 Michael Hübner 12

PGPool II Frontend - Scripts
● Failover (on Frontend)

– Connect to new master
– Promote PostgreSQL instance to 

primary
– Create replication slot

● Online recovery (on Frontend)
– Connect to node that needs recovery
– Stop PostgreSQL instance
– Recover from primary using 

pg_rewind
– Create recovery.conf

● PgBackRest information
● Set node to Standby

– Start PostgreSQL instance

Primary

Standby

Down

Primary

Failover



18.03.21 Michael Hübner 13

PGPool II Frontend - Scripts
● Failover (on Frontend)

– Connect to new master
– Promote PostgreSQL instance to 

primary
– Create replication slot

● Online recovery (on Frontend)
– Connect to node that needs recovery
– Stop PostgreSQL instance
– Recover from primary using 

pg_rewind
– Create recovery.conf

● PgBackRest information
● Set node to Standby

– Start PostgreSQL instance

Down

Primary

Standby

Primary

Online recovery



18.03.21 Michael Hübner 14

The Setup - Backup

pgBackRest

Client

read/write queries read/w
rite

 querie
s

read queries

S
tr

ea
m

in
g

re
pl

ic
at

io
n

Primary

Standby



18.03.21 Michael Hübner 15

pgBackRest
● Open source backup solution for PostgreSQL (MIT license)
● What does it provide?

– Full, differential, incremental backups
– Retention options
– Compressed and encrypted
– S3 backend backup

● Setup
– Backup run per cronjob on frontend

● 1x full backup per week
● 6x incremental backups per week

– Retention
● 12 full backups (3 months)
● 32 incremental backups (includes full backups in count → 4 weeks)

if (PGPool is not running):
exit

change to user „postgres“
if (all backends up):

if (cannot ping standby):
send alert mail
exit

ssh to standby
run backup
if (error during backup):

send alert mail
exit

else:
log error
exit



18.03.21 Michael Hübner 16

The Full Setup

pgBackRest

Client

read/write queries read/w
rite

 querie
s

read queries

S
tr

ea
m

in
g

re
pl

ic
at

io
n

Primary

Standby



18.03.21 Michael Hübner 17

General Functionality Tests

● Cluster status

● Failover
● Currently testing upgrades
● Pitfalls encountered when

– Attaching a node (never really need to do this by hand)
– Promote a node to primary (never really need to do this by 

hand)



18.03.21 Michael Hübner 18

Resource Usage
● Idea: test performance of setup when importing Zabbix database
● Setup

– Frontend installed on VM
– Backends installed on baremetal machines

● Scenarios
– Test 1: Frontend on AMD based hypervisor node in different building
– Test 2: Frontend on local Intel based hypervisor node
– Test 3: Frontend on local AMD based hypervisor node

● Questions to answer
– Does latency matter (on our scale)?
– What are limiting factors?



18.03.21 Michael Hübner 19

Resource Usage
● Scenarios

– Test 1: Frontend on AMD based hypervisor 
node in different building

– Test 2: Frontend on local Intel based hypervisor 
node

– Test 3: Frontend on local AMD based 
hypervisor node

● What we can learn
– Latency does not impact performance at our 

scale
– Single core perfomance matters

● Older AMD hypervisor do not offer hardware 
support for SSL algorithms → saturation on frontend

● Newer Intel hypervisor does offer hardware support 
→ saturation on backends

Test 1 Test 2 Test 3



18.03.21 Michael Hübner 20

Disaster Drill
● Scenario: complete loss of both backends
● Strategy

– Stop PGPool on frontend (if not broken as well)
– Reinstall backend nodes using puppet

● PostgreSQL instances will not be running

– Restore database on one node using pgBackRest
● Run puppet once to create directory structure first

– Start frontend
● Restored backend node will become primary

– Recover second backend node using PGPool
● If difficulties arise → manual recovery with pg_basebackup



18.03.21 Michael Hübner 21

Outlook: TimescaleDB
● Extension for PostgreSQL (TSL license)

– Can use all community features for free unless hosted as a Database-as-
a-Service

● Provides very effective compression for time-series databases 
(„94% - 97% compression rates“)
– Zabbix database is a perfect candidate
– Monitoring is effectively time-series with one number per point in time

● Compression achieved via delta-delta encoding
– Delta encoding: only store change w.r.t. previous data point
– Delta-delta encoding: apply delta encoding on delta encoded data



18.03.21 Michael Hübner 22

Summary & Outlook
● Summary

– Introduced PGPool cluster setup to 
be used for Zabbix monitoring

– Highlighted some of the most 
important features and pitfalls

● Outlook
– Test updates/upgrades of setup, e.g. 

PostgreSQL version upgrade 11 → 
12

– Activate TimescaleDB for Zabbix 
database

pgBackRest

Primary

Standby



18.03.21 Michael Hübner 23

Backup


	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23

