

Moving to HTCondor (and fighting covid in the middle)

S. Dal Pra and CNAF colleagues, Also starring:

T. Boccali (INFN-Pisa)
Alberto Boldrini (Sibylla Biotech srl)

At a glance

- In the beginning (2018)
 - ~ 400 KHS06, 36500 slot, 850 physical WN
 - (5+2) x CREAM-CE / LSF 9.1.3
 - ~ 40 User groups: 24 Grid VOs, ~ 25 local
- A minimal HTCondor testbed (May, 2018)
 - Practice, get some pilots submitted by LHC exp,
 - writing scripts and tools, adapt to work with existing facilities.
 - Plan: start a small production cluster, then move WN there.
- In the end (Jun. 2020)
 - (6+1) x HTC-CE, 1 x CM, 850 WN
 - (2 x Ovirt, 2 x Vmware, 2 x Bare metal)
 - 1 x SN, shared for Remote Submission (FS_REMOTE)

Migration plan

- 1. The switch should be (at most) transparent for users
 - LHC VOs not a big issue: ready to access local resources through a CE
 - Local users: move from bsub to condor_submit
- 2. Minimize impact on site management tools
- 3. The switch should be reversible (rollback to LSF possible as extreme ratio)
- 4. Allow cohexistence of two distinct prod clusters (allow users to take their time)
- 5. Cluster management should remain "similar", at least initially.

Adapting Management

- LSF had two nice features:
 - few text files on a shared fs to configure the whole cluster
 - Hostgroups: hierarchical sets of named hosts, can be combined with simple set operations (union and difference)
- These were adapted to HTCondor:
 - We keep HTCondor configuration files on a shared fs
 - a node in the groups: wn, cpu2019, atlas read from wn.conf,
 cpu2019.conf, atlas.conf and finally from <my_hostname>.conf
- Flexible: temporarily adding a few classAd to an arbitrary set of WNs is a matter of defining the hostgroup <groupname> and the classads into <groupname>.conf

Using hostgroups

```
[root@farm-ops conf]# cat htc_hostgroup.conf
[\ldots]
cn61006 (cn-610-06-01 cn-610-06-02 ... cn-610-06-12)
rack610 (cn61001 cn61002 cn61003 cn61004 cn61005 cn61006)
cineca (rack608 rack609 rack610)
# cn-610-06-04 : broken disk; wn-200-11-01-01-a : testing
quarantena (cn-610-06-04 wn-200-11-01-01-a)
sl7_nodes (sl7_t1 cineca cpu2017 cpu2019 ~quarantena)
[root@farm-ops conf]# cat cineca.conf
t1 \text{ wn hs}06 = 832
StartJobs = ((AcctGroup == "atlas" || AcctGroup == "cms") && RequestCpus == 8)
[root@farm-ops conf]# cat quarantena.conf
START = False
```


Adapting cmdline tools

 HTC: condor_q and condor_status. Very powerful, yet easy to get cumbersome. Most common commands were emulated by using python bindings:

LSF	нтс
bjobs	hjobs.py
bqueues	Hqueues.py
bhosts	Hhosts.py

```
[root@htc-2 ~]# /usr/share/htc/cnaf/bin/hjobs.py | head
JobId RemoteOwner GlobalJobId JobStart Cpus Machine TotalCpus LoadAvg CPUsUsage
13946863.0 somelocaluser sn-01 2021-03-15:03:03:47 1 wn-204-13-05-05-a 40.0 1.0 0.999946352996
2061220.0 pillhcb031 ce05-htc 2021-03-15:07:17:40 1 wn-205-10-20-02-a 64.0 1.0 0.99692285813
3304976.0 alicesgm008 ce03-htc 2021-03-15:00:55:24 1 wn-205-13-13-06-a 40.0 0.69 0.437431741832
3307461.0 pillhcb031 ce03-htc 2021-03-15:09:33:20 1 wn-205-11-39-01-a 40.0 1.05 0.999249707998
2484979.0 alicesgm008 ce01-htc 2021-03-14:19:10:26 1 wn-205-08-09-03-a 64.0 0.98 0.985553282691
2483132.0 alicesgm008 ce01-htc 2021-03-14:10:36:10 1 wn-205-11-13-01-a 40.0 0.97 0.983154470612
2489162.0 atlasprd011 ce01-htc 2021-03-15:10:42:32 8 cn-608-01-07 72.0 1.91 1.02848197081
2210728.0 pillhcb031 ce06-htc 2021-03-15:09:06:33 1 wn-204-13-01-05-a 40.0 1.05 0.99931512371
3344123.0 alicesgm008 ce02-htc 2021-03-15:00:23:23 1 wn-205-08-07-01-a 64.0 0.78 0.791479697315
```


Adapting Accounting

- LSF: Using custom accounting system from Oct. 2013.
 Usage records collected daily from LSF and CREAM-CE and stored on a PostgreSQL database
- HTC: We configure PER_JOB_HISTORY_DIR
 - One text file per job, as key/value pairs
 - HS06 of the WN present as custom Job Classad
 - CRON script (*/3 min) to parse the file and "INSERT INTO" the database. Files are then moved to a backup storage
 - This enables us to "merge" monitoring and accounting
 - Todo: we are going to renew the parser to use
 - condor_q -jobads history.<ClusterId>.<ProcId> -af <classad list>

Adapting Accounting

Apel records obtained as a SQL VIEW:

```
acct=> SELECT * FROM apelhtjob WHERE "Processors"=8 LIMIT 1;
Site
                            INFN-T1
SubmitHost
                            ce01-htc.cr.cnaf.infn.it#994620.0#1598009345
MachineName
                            htc-2.cr.cnaf.infn.it
                            atlas
0ueue
                            994620
LocalJobId
LocalUserId
                            atlasprd011
                            /DC=ch/DC=cern/OU=Organic Units/OU=Users/CN=atlpilo1/CN=614260/CN=Robot: ATLAS Pilot1
GlobalUserName
                            /atlas/Role=production/Capability=NULL
FQAN
VO
                            atlas
                            /atlas
VOGroup
                            Role=production
VORole
WallDuration
                            5484
CpuDuration
                            38555
Processors
                            8
NodeCount
                            1
StartTime
                            1598012883
EndTime
                            1598018367
InfrastructureDescription
                            APEL-HTC-HTC
InfrastructureType
                            arid
ServiceLevelType
                            HEPSPEC
ServiceLevel
                            13.419
acct=>
```


Migration start

Having built a set of tools and accounting in place we could start, by growing the small production HTC cluster:

- Start with 16 WNs, have LHC VOs using it
- Add more HTC-CEs
- Add more WNs, Migrate VOs and local groups.
- Leave LSF with a small bunch of WNs for last late users (May to Jun 2020).
- Note: during transition, providing correct shares was troublesome.
- Migrating WNs: No need to drain the machine: LSF and HTC jobs can cohexist in the same WN, by reducing node slots in LSF and setting NUM_CPUS accordingly at the STARTD

Sibylla Covid-19 Project

Fighting covid

- Sibylla: INFN spin-off, operating on drugs design
- Covid-19 Project: simulating the folding of the ACE2 protein
- Goal: find a drug to treat a sick person
- INFN-T1 was requested (March 20, 2020) to provide ~ 50% of its computing power for a period up to a month
- We were just in the middle of the migration: 50% on LSF and 50% on HTC

The Sybilla use case

- 1. 32 cores jobs
- 2. need for AVX2 compatible machines
- 3. Several days runtime (~ 5 ... ~ 15)
- 4. Need to have a single run of jobs, in parallel.
- 5. Need write access for a shared area (for checkpointing)
- 6. Need for GCC 9.x
- 7. User side more used with LSF than HTCondor

Problems

- 1. need for AVX2 machines on LSF
 - Most of these already moved to HTC
 - 72 slot each --> 2 jobs and 8 unused slots
- 2. 32 cores and several days of runtime
 - Long draining time before moving back to HTC
- 3. Need for GCC 9.x
 - Available from /cvmfs/
- 4. Write access need on a shared area
 - A GPFS volume was set up with rw permission
 - 5. Needed Memory and storage size not an issue
 - 6. Severe underpledge for other experiments
 - LHC VOs promptly agreed to halve their expected workload.

Provisioning actions

- 1. HTC: Draining
 - (START = False) on the AXV2 WNs
- 2. LSF:
 - Setup biotech queue and dedicated hostgroup (closed_Adm, initially)
 - Enable WNs (badmin hopen) whose HTCondor jobs are done (STARTD remains active anyway).
 - 3. Sybilla: Set up and tune their workload on a test machine in the meanwhile

Results

- First Sybilla jobs running by March 23, Last jobs ended by April 7
- After jobs submission end, WN were closed in LSF (badmin hclose) and enabled in HTCondor (NUM_CPUS = 32 initially) to reduce cputime loss due to draining

Accounting dashboard

Monitoring / accounting

WNs and GPFS mounts

Experience so far

- HTCondor is an improvement for us
 - Stable and robust, with a rich and powerful set of capabilities
 - New use cases being supported (DAG jobs, and other being investigated)
- Configuring can be difficult
 - Help from developers and community
 - Most of the initial difficulties have been solved
 - Some issues with fairshare with multicore and singlecore mix still being addressed

The End