LCWS MiniSchool Online, March 15^h, 2021

Electron-Positron Colliders

energy and luminosity, damping rings, polarization,...

Wolfgang Hillert

Hamburg University *Institute for Experimental Physics*

LCWS MiniSchool, March 15th, 2021

LCWS MiniSchool Online, March 15^h, 2021

Electron-Positron Colliders

energy and luminosity, damping rings, polarization,...

Contents:

- Introduction: Acceleration, Luminosity, Colliders, ...
- Acceleration: Cavities, Key Parameters, nc and sc Linacs
- Acc. Phys. Basics: Emittance, Optical Functions and Resonances, ...
- Luminosity:
- Add. Systems:
- e⁺-e⁻ Projects:

Crossing Angle, Hourglass, Beam-Beam, ... Polarization, Damping Rings, ... ILC, CLIC, FCC-ee, CEPC

Accelerators for (Particle Physics)

Particle Physicists wish list comprises the following:

- TeV beams of all kind of particles (γ , e, μ , p, ...)
- highest luminosity, that means in particular:
 - a) premium beam quality and performance
 - b) ultimate intensity while having stable beam delivery all the time
- polarized particles of all kinds (preferably antiparticles like e^+ and \overline{p})
- enough free space to place huge detectors

2 Classes of High-Energy Accelerators:

- **Hadron Colliders**: Highest achievable energies → **"discovery potential"**
- e⁺ e⁻ Colliders: well-known and understood electromagnetic vertex → "precision machines"

Why Colliders?

Example: p-p Collisions, want S = 1 TeV requires:

E = 500 TeV

E = 0.5 TeV

Beam Acceleration

Charged particles are influenced by the Lorentz force: $\vec{F} = e \cdot \vec{E} + e \cdot (\vec{v} \times \vec{B})$

Energy gain:
$$\Delta W_{kin} = \int \vec{F} \cdot d\vec{s} = e \cdot \int E_{\parallel} \cdot ds = e \cdot U$$

\rightarrow We need a longitudinal electrical field E_{\parallel} !

Field Emission / Breakdown

Coulomb-Potential:

$$U = \int \vec{F} \cdot d\vec{s} = \frac{q^2}{4\pi\varepsilon_0} \int \frac{ds}{r^2} = \frac{1}{4\pi\varepsilon_0} \cdot \frac{-q^2}{2r}$$

homogeneous E-Field:

Beam Acceleration

Building a TeV Accelerator

Example LHC $\rightarrow e^+e^-$: Bending Magnets: B = 8.33TBending Radius: $R = \frac{p}{eB}$ Beam Energy $E_{kin} = 0.5$ TeV! $R = \frac{pc}{ecB} = \frac{5 \cdot 10^{11}}{3 \cdot 10^8 \cdot 8.33} \approx 200m$ $\Rightarrow L = 2\pi R + x \approx 5 \text{km}$

Example XFEL $\rightarrow e^+e^-$: Achieved: $U_{accel} = 29.5 \text{ MV/m}$

Beam Energy $2E_{kin} = 1$ **TeV!**

$$\Rightarrow L = \frac{2E_{kin}}{U_{accel}} + x \approx 50 \text{km}$$

Acceleration ↔ **Radiation**:

Limitations in Circular Accelerators

Electrons:

Example:

LHC bending radius R = 2.8km (circumference = 27km) electron beam energy $E_{kin} = 500$ GeV = 0.5TeV:

 \rightarrow energy loss per turn $\Delta W = 2$ TeV!!!

AV 500kl

Large Electron Positron Collider

\$ Scaling of Colliders

Avg. Beam Current

Important for achievement of enough wanted reactions in collisions.

Circular Collider (FCC-ee):

- RF has to compensate SR losses, 50MW per beam acceptable
- max average beam current:

$$I_{avg} = 29 \,\mathrm{mA} \,\mathrm{@} \,\mathrm{H}, \ I_{avg} = 5,4 \,\mathrm{mA} \,\mathrm{@} \,\mathrm{t} \,\overline{\mathrm{t}}$$

Linear Collider (ILC):

- RF $\rightarrow P_{\text{beam}}$, but limited: e.g. 5 x 1312 bunches/sec with $N_b = 10^{10}$ particles (ILC)
- max average beam current:

$$I_{avg} = 11 \,\mu A @H \text{ and } @t \overline{t}$$

\rightarrow has this consequences?

Luminosity

... the unknown divinity ...

One of the most important acc. parameter for particle physicists!

- Luminosity $\dot{N} = \sigma \cdot \mathcal{L}$
- Integrated Luminosity:

$$\dot{N} = \boldsymbol{\sigma} \cdot \int \mathcal{L} \cdot dt = \boldsymbol{\sigma} \cdot \mathcal{J}$$

t-meas.

$$N_{b,b} = \sigma \cdot \iint n_1(x,z) \cdot n_2(x,z) \cdot dx \, dz$$

$$\downarrow$$

$$\frac{e^+ - e^-, p - p \text{ Collider:}}{\sigma_1 = \sigma_2 = \sigma}$$

$$\int \mathcal{L} = \frac{n_b \cdot f_{rev}}{4\pi} \cdot \frac{N_1 \cdot N_2}{\sigma_x \cdot \sigma_z}$$

Colliders

Introduction Summary

Essence: What do we have to learn in the next hour?

- How do we accelerate electrons (positrons) to ~TeV?
 - Crash course in RF acceleration:
 - Cavities and their important parameters
 - Standing wave (sc) and travelling wave (nc) Linac structures

• How can we achieve a maximum (acceptable) luminosity?

- Crash course in beam dynamics in accelerators:
- How much can and should we squeeze? (\rightarrow final focus, damping rings, ...)
- What limits the intensity? (\rightarrow RF, beam-beam, instabilities, ...)
- What else matters? (beam-beam, beamstrahlung, wakefields, ...)
- What about polarized beams?
- Summary: Linear vs. Circular Collider pros and cons

Acceleration

Linear Collider:

Circular Collider:

Cavities

General Idea: high accelerating field caused by resonance magnification

Parameters of interest:

- resonance frequency
- quality factor
- shunt impedance

Accelerating voltage: P_{walls}

$$\omega_{0} = 1/\sqrt{LC} = \text{determined by geometry}$$

$$Q = \omega_{0}RC = \frac{R}{\omega_{0}L} = \frac{2\pi \cdot W_{stored}}{T_{RF} \cdot P_{walls}} = \omega_{0}\tau_{e}$$

$$R_{S} = R = Z(\omega_{0}) = \text{resistance on resonance}$$

$$R_{S} = \frac{U^{2}}{2R_{S}} \rightarrow \text{requires} \quad P_{RF} = \left(\frac{U^{2}}{2R_{S}}\right) + U \cdot I_{beam}$$

Shunt Impedance

Determines unwanted power losses in cavity walls!

Typical values and scaling of R_S and Q ($f_{res} = 1.3$ GHz):

normal conducting cavities (copper, ~1 meter long resonator):

$$R_{s} \approx 10^{7} \Omega, \quad Q \approx 10^{4} \qquad \left(\frac{R_{s}}{R_{s}} \sim \sqrt{f_{res}}, \frac{Q}{Q} \sim 1 / \sqrt{f_{res}} \right)$$

• superconducting cavities (niobium, ~1 meter long resonator):

$$R_{s} \approx 10^{13} \Omega, \quad Q \approx 10^{10}$$
 $R_{s} \sim 1/f_{res}, \quad Q \sim 1/f_{res}^{2}$

Losses in superconducting cavities about factor $10^5 - 10^6$ smaller!

Carnot efficiency (
$$T_{Cav} = 2.2$$
K): $\eta_{Carnot} = \frac{T_{Cav}}{T_{room} - T_{Cav}} \approx 0.7\%$

Overall cooling efficiency: $\eta \approx 0.1-0.2\%$, but R_S gain > 10⁵!

 $R_{\rm s}/Q \sim f_{\rm res}$

Superconducting RF

But: Maximum accelerating field limited by H_{C2} of BCS theory to ≈ 54 MV/m!

Choice of optimum frequency and temperature:

Linear Collider: Acceleration

21

Shunt Impedance and its Importance

RF power needed for generating the acc. field:

$$P_{RF} = \frac{U^2}{2R_S}$$

Let's assume 25cm and 1m long structures and $E_{kin} = 250 \text{ GeV}$

a) n.c.
$$(E_{acc} = 72 \text{ MV/m})$$
: $L_{RF} = 3.5 \text{ km} \rightarrow 13889 \text{ structures}$
RF power $P_{RF} = 13889 \cdot \frac{(7 \cdot 10^7 \text{ V/m})^2}{2 \cdot 10^7 \Omega} \approx 10^{11} \text{ W}$

b) s.c.
$$(E_{acc} = 30 \text{ MV/m})$$
: $L_{RF} = 8.3 \text{ km} \rightarrow 8333 \text{ structures}$
RF power $P_{RF} = 8333 \cdot \frac{\left(3 \cdot 10^7 \text{ V/m}\right)^2}{2 \cdot 10^{13} \Omega} \approx 4 \cdot 10^5 \text{ W}, \ \eta_{cryo} = 10^{-3}$

nc versus sc Linacs

Normal Conducting Linac

Breakdown limits E_{max} !

- ➢ short beam & RF pulses
- short filling times
- > TW structures $(\tau_{\text{fill}} = v_g \cdot L)$
- "high" RF frequency (tolerances!)

CLIC @ CERN:

$$f_{RF} = 12 \text{ GHz}, I_b = 1.2 \text{ A}, t_b = 244 \text{ ns}$$

CLIC PULSE SHAPE OPTIMIZATION

Superconducting Linac

Supercritical field H_{C2} limits E_{max} !

- ▶ optimization for low H@ walls
- long RF pulses possible
- $\succ SW structures (\leftrightarrow low losses)$
- "low" RF frequency (size)

TELSA, FLASH, XFEL \rightarrow ILC: $f_{RF} = 1.3 \text{ GHz}, N_b = 10^{10}, t_b = 0.65 \text{ms}$ input coupler HOM2 probe $R_e^{\text{regulator}}$ $R_e^{\text{regulator}}$ low H

cavity axis

23

Magnets

Strong (AG) Focusing:

Strong Focusing: Chromatic Correction: Focal length Enveloppe Sextupole 3 x [mm] $\Delta p/p > 0$ 0 $\Delta p/p = 0$ -1 -2 -3 $\Delta p/p < 0$ Dispersion $D \neq \mathbf{0}$ Quadrupole Quadrupole Quadrupole Quadrupole Sextupole **Dipole Dipole Dipole** OD OF betatron **Simplest arrangement: FODO** oscillation

Optical Resonances

Tune Q = # betatron oscillations per turn

Tune and Optical Resonances:

Optical Resonances:

$$m \cdot Q_x + l \cdot Q_y = n$$

Tune Diagram:

Circular Accelerators:

- Beam-Beam Interaction
- Space Charge Forces
- Beam-Wall Interaction
- Capture of Ions / Electrons

Tune Spread! Intensity Limitation! Doesn't affect a Linear Accelerator

Particle Trajectories ↔ Beam

Beam Emittance

Each particle is represented by a point (x, x') in phase space!

Liouville: area in phase space remains constant \rightarrow emittance $\varepsilon =$ konst.

Take care:
$$x' = \frac{dx}{ds} = \frac{dx}{dt}\frac{dt}{ds} = \frac{v_x}{\beta c} = \frac{1}{\beta \gamma}\frac{p_x}{m_0} \rightarrow \text{norm. emittance } \boxed{\varepsilon_n = \beta \gamma \varepsilon = \text{konst.}}$$

Beam Optics

Beam size is determined by emittance ε and (lokal) beta function $\beta(s)$!

Luminosity Optimization

Beam Crossing

"Beta Squeeze" $\sigma_{x,y} = \sqrt{\varepsilon_{x,y}} \cdot \beta_{x,y}$

Approach: strong vertical squeeze

Storage Rings

Important Relations:

a) Luminosity

b) Beam-Beam Parameters

$$\mathcal{L} = \frac{n_b \cdot f_{rev}}{4\pi} \cdot \frac{N_1 \cdot N_2}{\sigma_x \cdot \sigma_y} \cdot S_\theta \cdot H$$

$$\xi_{x,y} = \frac{r_e N}{2\pi\gamma_r} \frac{\beta_{x,y}^*}{\sigma_{x,y} \left(\sigma_x + \sigma_y\right)}$$

Beam-Beam Parameters

$$\xi_{x,y} = \frac{r_e N}{2\pi\gamma_r} \frac{\beta_{x,y}^*}{\sigma_{x,y} (\sigma_x + \sigma_y)}$$

Circular Colliders: $\xi_{x,v} < 0.05$ typ.

$$\sigma_{x,y} = \sqrt{\varepsilon_{x,y}\beta_{x,y}}$$

Linear Colliders:

$$\xi_x = 0.54, \ \xi_y = 1.44 \ (ILC)$$

,

$$\mathcal{L} = \frac{\gamma_r}{2er_e} \cdot \left(1 + \frac{\sigma_y^*}{\sigma_x^*}\right) \cdot \frac{I_{beam} \cdot \xi_y}{\beta_y^*} \cdot S_\theta \cdot H$$

But:

Time structure of linear / circular colliders are different:

- **Comparison FCC-ee (@Higgs) ↔ ILC:**
- SR: $I_{beam} = f_{rev} n_b q N = 3000 \cdot 393 \cdot q \cdot 1.5 \cdot 10^{11} = 29 \text{ mA}$ • LC: $I_{beam} = f_{rep} n_b q N = 5 \cdot 1312 \cdot q \cdot 1 \cdot 10^{10} = 11 \mu \text{A}$

Linear Colliders

Pinch effect - disruption

beam-beam collision

Linear Colliders

Additional focusing by opposing beams

a) Luminosity

b) RF to beam power efficiency

$$\mathcal{L} = \frac{n_b \cdot f_{rep}}{4\pi} \cdot \frac{N \cdot N}{\sigma_x \cdot \sigma_y} \cdot H_D$$

$$P_{beams} = f_{rep} n_b N \cdot E_{cm} = \eta_{RF} \cdot P_{RF}$$

Circular vs. Linear Collider

F. Gianotti

Beamstrahlung

Particles are deflected in magnetic field of colliding bunch:

Peak field:
$$B_{\text{max}} = \frac{2E_{\perp,\text{max}}}{c} = \frac{eN}{2\pi\varepsilon_0 c\sigma_x \sigma_s} = \text{up to 1000 Tesla!}$$

Classical treatment of synchrotron radiation: $\Delta E \sim \frac{\gamma^4}{R^2} \sim \gamma^2 B^2$

- > particles with high energy loss will be lost
- > short beam life time

 \rightarrow Storage rings

impact on luminosity and actual collision energy

Beamstrahlung $\rightarrow \mathcal{L}$

RMS energy loss for weak beamstrahlung:

$$\delta_{BS} \approx 0.86 \frac{er_e^3}{2m_0c^2} \cdot \frac{E_{cm}}{\sigma_s} \cdot \frac{N^2}{\left(\sigma_x + \sigma_y\right)^2} \propto \frac{E_{cm}}{\sigma_s} \cdot \frac{N^2}{\sigma_x^2} \quad -$$

 \succ use flat beams ($\sigma_x >> \sigma_y$) but keep $\sigma_x + \sigma_y$ large to reduce δ_{BS}

a) Luminosity

b) Vertical rms beam size

$$\mathcal{L} = \frac{1}{4\pi E_{cm}} \cdot \left(\eta_{RF} P_{RF}\right) \cdot \left(\frac{N}{\sigma_{x} \sigma_{y}} \cdot H_{D}\right)$$

$$\sigma_{y} = \sqrt{\frac{\varepsilon_{n,y}\beta_{y}}{\gamma_{r}}}$$

 $\rightarrow \text{Again Rewrite Luminosity Formula} (\delta_{BS} \approx \text{few \%})$ $\mathcal{L} \propto \frac{\eta_{RF} P_{RF}}{4\pi E_{cm}} \cdot \sqrt{\frac{\delta_{BS}}{\varepsilon_{n,y}}} \cdot \sqrt{\frac{\sigma_s}{\beta_y}} \cdot H \cdot H_D \propto \frac{\eta_{RF} P_{RF}}{4\pi E_{cm}} \cdot \sqrt{\frac{\delta_{BS}}{\varepsilon_{n,y}}} \cdot H_D \text{ damping rings!}$

Luminosity: Beamstrahlung Limit

Beam Emittance

a) Adiabatic Damping

$$\varepsilon = \frac{1}{\beta \gamma} \varepsilon_n^{E_{kin} = 250 \,\text{GeV}} 2 \cdot 10^{-6} \varepsilon_n$$

in particular not sufficient for positrons!

 b) Radiative Damping equilibrium emittance in storage rings only dependent on the magnetic lattice → low emittance lattice (suppress dispersion)

Damping rings required for Linear Collider!

e⁺ - e⁻ in Storage Rings

Equilibrium Emittance \leftrightarrow **"Radiation" Damping**

Dispersion!

2 Effects!

Cooling:

- photon emission \rightarrow recoil (long. and transverse)
- acceleration restores long. momentum
- → Net reduction of transv. momentum: damping!

Heating:

- photon emission in dispersive sections
- shift of ideal dispersion orbit by δx , $\delta x'$
- \rightarrow Excitation of betatron oscillations: heating!

Equilibrium Emittance:

• Cooling = Heating $\varepsilon_{x} = \frac{55}{32\sqrt{3}} \cdot \frac{\hbar \sigma}{J_{x} m_{0} c^{2}} \cdot \frac{\left(\frac{1}{R^{3}} \cdot \mathcal{H}(s)\right)}{\left(\frac{1}{1}\right)^{2}}$

δx

Orbit

x

Polarized Electrons

Functional Principle:

Photoelectron emission from GaAs

polarization transfer from laser photons to emitted electrons

ILC Positron Source Layout

ilr

İİĻ

CO₂ amplifier

hν

Interaction point

e

→| |←__0.5 ns

312 pulses

CLIC Compton Linac

Compton backscattering inside a CO₂ laser amplifier cavity
 Production of 1 photon per electron (demonstrated at BNL)

> 10 consecutive Compton IPs to accumulate γ flux

Polarized Positrons *(a)* **ILC**

Self Polarization in Storage Rings

Transition Rates :

- ➢ no spin flip: $w_{\uparrow\uparrow}$, $w_{\downarrow\downarrow}$
- ▶ with spin flip: $w_{\uparrow\downarrow}$, $w_{\downarrow\uparrow}$

Probability of a spin-flip transition:

$$\frac{w_{\uparrow\downarrow} + w_{\downarrow\uparrow}}{\left(w_{\uparrow\uparrow} + w_{\downarrow\downarrow}\right) + \left(w_{\uparrow\downarrow} + w_{\downarrow\uparrow}\right)} = \frac{1}{3} \cdot \left(\frac{\hbar\omega_c}{E}\right)^2 < 10^{-10} = \text{very small, but:}$$

The beam will get polarized in a while due to $w_{\uparrow\downarrow} > w_{\downarrow\uparrow}$!

Sokolov-Ternov-Effect:
$$P(t) = P_{ST} \left(1 - e^{-\frac{t}{\tau_P}} \right)$$

Rise time: $\tau_P = \left(\frac{8}{5\sqrt{3}} \frac{c\lambda_c r_e}{2\pi} \frac{\gamma^3}{R^3} \right)^{-1}$
92.4%

Depolarizing effects: $P_{\infty} = P_{ST} \frac{\tau_{depol}}{\tau_{P} + \tau_{depol}}$ and $\frac{1}{\tau} = \frac{1}{\tau_{P}} + \frac{1}{\tau_{depol}}$

Depolarizing Resonances

Circular ↔ **Linear Collider**

Linear Colliders

The 'Generic' Linear Collider (1/2)

Damping Rings

International Linear Collider: ILC The Next Generation?

European XFEL Commissioning

ca. 1 kilometer "cold" LINAC

HELMHOLTZ

ASSOCIATION

Ciemat CITS

N2P3 🥨 🎲 📠 🚇 🋄

PAUL SCHERKER INSTITUT

General Assembly – May 4th, 2017 XFEL Accelerator Consortium, many institutes

- 0.5 / 3 TeV Parameters

Physics	Max. E _{cm}	500 GeV	3 TeV
	Luminosity	1.8×10 ³⁴ cm ⁻² s ⁻¹	2.0x10 ³⁴ cm ⁻² s ⁻¹
	Polarisation (e-/e+)	80% / 30%	none
	δ _{BS}	4.5%	29%
tiny emittants at IP nano-beam-beam strong beam-beam (interaction point)	σ_x / σ_y σ_z $\gamma \epsilon_x / \gamma \epsilon_y$ β_x / β_y bunch charge	574 nm / 6 nm 300 μm 10 μm / 35 nm 11 mm / 0.48 mm 2×10 ¹⁰	45 nm / 1 nm 44 μm 660 μm / 20 μm 6.9 mm / 0.068 mm 0.6 nC
High-power high-curren. High-power high-curren short long bunch NC RF beams. short NC RF trains. SRF NC ructure)	Number of bunches / pulse Bunch spacing Pulse current Beam pulse length Pulse repetition rate	1312 554 ns 5.8 mA 727 μs 5 Hz	312 0.5 ns 1.2 A 156 ns 50 Hz
Accelerator (general)	Average beam power	10.5 MW (total)	14 MW
	Total AC power	163 MW	<mark>415 MW</mark>
	(linacs AC power	107 MW)	2 x 63.9 MW (drive beam)

Beyond the LHC: the FCC's

LHC 27 km, 8.33 T 14 TeV (c.o.m.)

1300 tons NbTi 0.2 tons HTS

CÈRN

HE-LHC 27 km, **20 T** 33 TeV (c.o.m.) 3000 tons LTS 700 tons HTS

FCC-hh 80 km, **20 T** 100 TeV (c.o.m.) 9000 tons LTS 2000 tons HTS FCC-hh 100 km, **16 T** 100 TeV (c.o.m.) 6000 tons Nb₃Sn 3000 tons Nb-Ti

FCC Study (Future Circular Colliders) CDR and cost review for the next ESU (2018)

- 80-100 km tunnel infrastructure in Geneva area
- design driven by pp-collider requirements
- with possibility of e+-e- (FCC-ee) and p-e (FCC-he)
- CERN-hosted study performed in international collaboration

electron-positron:

H: 2x120GeV, L = 8x10³⁴cm⁻²s⁻¹ tt: 2x182.5GeV, L = 1.5x10³⁴cm⁻²s⁻¹

LEGEND

HE_LHC 80km option potential shaft location

o 2012 Google mage 5 2012 GeoRye de 6 2012 IGN France

Geneva

parameter	Z	W	H (ZH)	ttbar ₆₃
beam energy [GeV]	45.6	80	120	182.5
arc cell optics	60/60	90/90	90/90	90/90
momentum compaction [10-5]	1.48	0.73	0.73	0.73
horizontal emittance [nm]	0.27	0.28	0.63	1.45
vertical emittance [pm]	1.0	1.0	1.3	2.7
horizontal beta* [m]	0.15	0.2	0.3	1
vertical beta* [mm]	0.8	1	1	2
length of interaction area [mm]	0.42	0.5	0.9	1.99
tunes, half-ring (x, y, s)	(0.569, 0.61, 0.0125)	(0.577, 0.61, 0.0115)	(0.565, 0.60, 0.0180)	(0.553, 0.59, 0.0350)
longitudinal damping time [ms]	414	77	23	6.6
SR energy loss / turn [GeV]	0.036	0.34	1.72	9.21
total RF voltage [GV]	0.10	0.44	2.0	10.93
RF acceptance [%]	1.9	1.9	2.3	4.9
energy acceptance [%]	1.3	1.3	1.5	2.5
energy spread (SR / BS) [%]	0.038 / 0.132	0.066 / 0.153	0.099 / 0.151	0.15 / 0.20
bunch length (SR / BS) [mm]	3.5 / 12.1	3.3 / 7.65	3.15 / 4.9	2.5 / 3.3
Piwinski angle (SR / BS)	8.2 / 28.5	6.6 / 15.3	3.4 / 5.3	1.39 / 1.60
bunch intensity [10 ¹¹]	1.7	1.5	1.5	2.8
no. of bunches / beam	16640	2000	393	39
beam current [mA]	1390	147	29	5.4
luminosity [10 ³⁴ cm ⁻² s ⁻¹]	230	32	8	1.5
beam-beam parameter (x / y)	0.004 / 0.133	0.0065 / 0.118	0.016 / 0.108	0.094 / 0.150
luminosity lifetime [min]	70	50	42	44
time between injections [sec]	122	44	31	32
allowable asymmetry [%]	±5	±3	±3	±3
required lifetime by BS [min]	29	16	11	10
actual lifetime by BS ("weak") [min]	> 200	20	20	25

CEPC-SppC 中國科學院為能物現研究所 Institute of High Energy Physics

From: A. Apyan, et al., "CEPC-SPPC Preliminary Conceptual Design Report", IHEP-CEPCPP-DR-2015-01, IHEP-AC-2015-012015.

64

LCWS MiniSchool e⁺ - e⁻ Colliders

Summary:

Different Electron-Positron Collider Approaches

Linear Colliders:

- sc: high η_{RF} , long pulses and bunch spacing, reduced sensitivity to tolerances (wakefields), upgradable, lower acc. gradients
- nc: ultimate acc. gradients, upgradable, low η_{RF} , short pulses and bunch spacing, highly sensitive to tolerances

Circular Colliders:

• reach about the same luminosity values, good time structure, limited by synchrotron radiation, not upgradable, no beam polarization