New Technologies & Ideas for Collider Detectors

Summary

Frank Simon

@ LCWS, March 2021
Overview

- Brief recap of LC Detector design “philosophy”
- Ideas beyond the baseline - based on discussions last night
Key Drivers for Detector Design

Physics & Experimental Conditions

Physics

- Collision energy:
 - ILC: 250 GeV - 500 GeV - 1+ TeV
 - CLIC: 380 GeV - 1.5 TeV - 3 TeV

 - Leptons, jets, from a few 10 to many 100 GeV, heavy bosons / complex final states

- Small cross-section: High luminosity required, Statistics is precious:
 Excellent reconstruction of all final states
Key Drivers for Detector Design

Physics & Experimental Conditions

Physics

- Collision energy:
 - ILC: 250 GeV - 500 GeV - 1+ TeV
 - CLIC: 380 GeV - 1.5 TeV - 3 TeV
 - Leptons, jets, from a few 10 to many 100 GeV, heavy bosons / complex final states
- Small cross-section: High luminosity required, Statistics is precious: Excellent reconstruction of all final states

Experimental conditions

- Extreme focussing: Beamstrahlung - tails in the luminosity spectrum, background from two-photon processes
- Pulsed operation in “bunch trains“:
 - $0(10 \text{ Hz})$ bunch train rate
 - $0.5 / \sim 550 \text{ ns bx separation}$
 - Enables power pulsing of detectors
Detector Performance Goals - Tracking

Motivated by key physics signatures

- **Momentum resolution**
 Higgs recoil measurement, $H \rightarrow \mu\mu$, BSM decays with leptons

 \[\sigma(p_T) / p_T^2 \sim 2 \times 10^{-5} / \text{GeV} \]

 precise and highly efficient tracking, extending to 100+ GeV
Detector Performance Goals - Tracking

Motivated by key physics signatures

- **Momentum resolution**
 - Higgs recoil measurement, H \rightarrow \mu\mu, BSM decays with leptons
 - \(\sigma(p_T) / p_T^2 \sim 2 \times 10^{-5} / \text{GeV} \)
 - precise and highly efficient tracking, extending to 100+ GeV
Detector Performance Goals - Tracking

Motivated by key physics signatures

- **Momentum resolution**
 Higgs recoil measurement, H -> μμ, BSM decays with leptons
 \[\sigma(p_T) / p_T^2 \sim 2 \times 10^{-5} / \text{GeV} \]
 precise and highly efficient tracking, extending to 100+ GeV

- **Impact parameter resolution, vertex charge**
 Flavour tagging: b/c/light tagging in Higgs decays, top physics, ...
 \[\sigma(d_0) \sim [5 \oplus (10 - 15)/\text{psin}^{3/2}\theta] \ \mu\text{m} \]
Detector Performance Goals - Jets, Photons, PID

Motivated by key physics signatures

- **Jet energy resolution**
 Recoil measurements with hadronic Z decays, separation of W, Z, H bosons, ...
 \[\sigma(E_{\text{jet}}) / E_{\text{jet}} \sim 3\% - 5\% \text{ for } E_{\text{jet}} > 45 \text{ GeV} \]
 reconstruction of complex multi-jet final states.

- **Photons**
 Resolution not in the focus: \(\sim 15 - 20\%/\sqrt{E} \)
 Worth another look?
 Coverage to 100s of GeV important
Detector Performance Goals - Jets, Photons, PID

Motivated by key physics signatures

- **Jet energy resolution**
 Recoil measurements with hadronic Z decays, separation of W, Z, H bosons, ...
 \[\sigma(E_{\text{jet}}) / E_{\text{jet}} \sim 3\% - 5\% \text{ for } E_{\text{jet}} > 45 \text{ GeV} \]
 reconstruction of complex multi-jet final states.

- **Photons**
 Resolution not in the focus: \(\sim 15\% - 20\%/\sqrt{E} \)
 Worth another look?
 Coverage to 100s of GeV important

- **Particle ID**
 Moderate capabilities, not overly emphasised in original design (with the exception of e, \(\mu \))
Detector Performance Goals - Jets, Photons, PID

Motivated by key physics signatures

- **Jet energy resolution**
 Recoil measurements with hadronic Z decays, separation of W, Z, H bosons, ...
 \[\frac{\sigma(E_{\text{jet}})}{E_{\text{jet}}} \sim 3\% - 5\% \text{ for } E_{\text{jet}} > 45 \text{ GeV}\]
 reconstruction of complex multi-jet final states.

- **Photons**
 Resolution not in the focus: \(\sim 15\% - 20\%/\sqrt{E}\)
 Worth another look?
 Coverage to 100s of GeV important

- **Particle ID**
 Moderate capabilities, not overly emphasised in original design (with the exception of e, \(\mu\))

- **Hermetic coverage**
 Dark matter searches in mono-photon events, ...
 N.B.: Achievable limits do not depend strongly on \(\sigma(E_{\gamma})\)
The Linear Collider Detector Design - Main Features

Variations in terms of size, field and tracker / calorimeter details

- **A large-volume solenoid** 3.5 - 5 T, enclosing calorimeters and tracking

- **Highly granular calorimeter systems**, optimised for particle flow reconstruction, best jet energy resolution \([Si, Scint + SiPMs, RPCs]\)

- **Low-mass main tracker**, for excellent momentum resolution at high energies \([Si, TPC + Si]\)

- **Forward calorimeters**, for low-angle electron measurements, luminosity \([Si, GaAs]\)

- **Vertex detector**, lowest possible mass, smallest possible radius \([MAPS, thinned hybrid detectors]\)

- **Triggerless readout** of main detector systems
Ideas Beyond The Baseline

Just first thoughts and discussion starters

• Evolution of the current designs:
 Technological advances, reduction in cost, ...

• Additional Capabilities:
 Particle ID, additional dimensions in reconstruction, ...

• Revolutionising the current designs:
 Different approaches to key elements

Based on “flash talks” in session N2*, and open discussion - thanks to all who participated!

*session organizers: Sarah Eno, Philipp Roloff, FS
Evolution of the current design

Technology evolution, cost, scalability

• A central theme: semiconductor technology evolution

 • CMOS sensors for vertex, tracker, em calorimetry
 • industrial process with high throughput: scalable, cost advantage wrt high-resistivity Si
 • integration of “intelligence” - reduced complexity

An important element: power consumption
Eliminating the need for power pulsing in some detector regions may have significant benefits for stability, system design

Towards a common technology for all Si systems?
Evolution of the current design

Technology evolution, cost, scalability

- A central theme: semiconductor technology evolution
 - CMOS sensors for vertex, tracker, em calorimetry
 - industrial process with high throughput: scalable, cost advantage wrt high-resistivity Si
 - integration of “intelligence” - reduced complexity

 An important element: power consumption
 Eliminating the need for power pulsing in some detector regions may have significant benefits for stability, system design

- Pixelated readout planes for TPC endplates:
 highest possible granularity for gaseous detectors

Towards a common technology for all Si systems?
Evolution of the current design

Technology evolution, cost, scalability

- A central theme: semiconductor technology evolution

 - CMOS sensors for vertex, tracker, em calorimetry
 - industrial process with high throughput:
 scalable, cost advantage wrt high-resistivity Si
 - integration of “intelligence” - reduced complexity

 An important element: power consumption
 Eliminating the need for power pulsing in some detector regions
 may have significant benefits for stability, system design

- Pixelated readout planes for TPC endplates:
 highest possible granularity for gaseous detectors

- GaAs sensors with traces:
 reduced complexity, further compactness for forward calorimeters
Evolution of the current design

Its not only sensors

- Mechanical systems: Ultra-light materials, additive manufacturing - reducing material, increasing stability, reducing cost?
Evolution of the current design

It's not only sensors

- Mechanical systems: Ultra-light materials, additive manufacturing - reducing material, increasing stability, reducing cost?
- Alternatives for data transmission: wireless in regions with extreme space constraints?
Evolution of the current design

It's not only sensors

- Mechanical systems: Ultra-light materials, additive manufacturing - reducing material, increasing stability, reducing cost?

- Alternatives for data transmission: wireless in regions with extreme space constraints?

- Detector design and reconstruction tools form a symbiosis - Particle Flow paradigm a great example

For best results:
- Careful integration and optimisation of all components together (hard- and software)
- Design for "understanding": a uniform and understood response may ultimately be a more important figure of merit for many measurements than the ultimate resolution
Adding Capabilities

The main trend: Timing

- Timing detectors with few 10 ps resolution now feasible - pioneered for HL-LHC upgrades

Optical:
Fast scintillators, SiPMs

![Image of scintillator and SiPM modules]
Adding Capabilities

The main trend: Timing

- Timing detectors with few 10 ps resolution now feasible - pioneered for HL-LHC upgrades

Optical:
Fast scintillators, SiPMs

Silicon:
LGADs and variants

Newer ideas: AC-coupled LGADs, deep-junction, trenches, …
Potential for fine pixilation
Adding Capabilities

The main trend: Timing

• Timing detectors with few 10 ps resolution now feasible - pioneered for HL-LHC upgrades

Optical:
Fast scintillators, SiPMs

Silicon:
LGADs and variants

Newer ideas: AC-coupled LGADs, deep-junction, trenches, …
Potential for fine pixilation

⇒ Dedicated timing systems, but also potential in trackers, calorimeters, …
Also here: interesting optimisation questions: A balance between time resolution, spatial resolution, data rate and power consumption
Adding Capabilities

Additional Dimensions: Timing and others

• Timing: What would we need?
 (note: Bgd rejection at LCs needs ~ns - level only)

• A clear use case: PID via time-of-flight.
 In the focus: π/K separation - important
 for example for flavour tagging.

• Typical momenta in the ~ 5 GeV
 region - depending on collision energy

• Resolutions today: < 10 ps with multiple layers
 - but system challenges to scale this up are
 formidable
Adding Capabilities

Additional Dimensions: Timing and others

• Timing: What would we need?
 (note: Bgd rejection at LCs needs ~ns - level only)

• A clear use case: PID via time-of-flight.
 In the focus: π/K separation - important
 for example for flavour tagging.

• Typical momenta in the ~ 5 GeV
 region - depending on collision energy

• Resolutions today: < 10 ps with multiple layers
 - but system challenges to scale this up are
 formidable

• Can provide an additional dimension in
 calorimetry: Separation of electromagnetic and
 hadronic processes based on time evolution

• Also: Dual readout - signal-based separation of em and
 hadronic components - now moving towards high granularity

Available time resolution with calos

Difference in ToA at ILD Calos

Available “now”

Doable with Intensive R&D in 5-10 years

Requires a new breakthrough

Figure G. Wilson

p[GeV]

3x3 cm² Glass tile 3x3 cm² Plastic Tile
Revolution of the current design

Is it worth revisiting established choices?

- The fundamental design choices for the current LC detector concepts were made ~15 years ago
- The sequence of energy stages has changed - at least for ILC: Now a first phase at 250 GeV (and below)

⇒ For some speculation on experiment staging, see Karsten Büßer this morning
Revolution of the current design

Is it worth revisiting established choices?

- The fundamental design choices for the current LC detector concepts were made ~15 years ago
- The sequence of energy stages has changed - at least for ILC: Now a first phase at 250 GeV (and below)
 ➡️ For some speculation on experiment staging, see Karsten Büsßer this morning

New ideas in jet reconstruction - emphasising electromagnetic resolution:

A fresh look at high-resolution ECALs?

For some speculation on experiment staging, see Karsten Büsßer this morning.
Revolution of the current design
Is it worth revisiting established choices?

• The fundamental design choices for the current LC detector concepts were made ~15 years ago
• The sequence of energy stages has changed - at least for ILC: Now a first phase at 250 GeV
 (and below) ➡️ For some speculation on experiment staging, see Karsten Büsser this morning

New ideas in jet reconstruction - emphasising electromagnetic resolution:

A fresh look at high-resolution ECALs?

Also other areas - technology of gaseous tracking (TPCs vs DCs) as an example.
In general: many parameters to consider - no straight-forward answers
Summary

... and Outlook

• The current LC detector concepts are well-established - and have been studied in realistic simulations, in many areas validated by testbeam measurements of realistic prototypes
• Technology has evolved, enabling reduction of cost and complexity, and the addition of new capabilities

• Evolution of concepts has started, using advances of silicon technology and others
• Additional Capabilities are studied - first and foremost the use of precision timing (<< 100 ps) - benefits and technological and system-based boundary conditions still need to be understood
• Revolutionising of designs is not excluded - New ideas studied in the context of circular colliders may also have merits for LCs.
Summary

... and Outlook

• The current LC detector concepts are well-established - and have been studied in realistic simulations, in many areas validated by testbeam measurements of realistic prototypes
• Technology has evolved, enabling reduction of cost and complexity, and the addition of new capabilities

• **Evolution** of concepts has started, using advances of silicon technology and others
• **Additional Capabilities** are studied - first and foremost the use of precision timing (<< 100 ps) - benefits and technological and system-based boundary conditions still need to be understood
• **Revolutionising** of designs is not excluded - New ideas studied in the context of circular colliders may also have merits for LCs.

The time is right for this process: Technological solutions are becoming available, and final technology choices are still a while off.

This will be exciting - In many cases no immediately obvious answers - and many “dimensions” to consider from technological aspects to running and staging scenarios and sociological aspects.
Summary

... and Outlook

- The current LC detector concepts are well-established - and have been studied in realistic simulations, in many areas validated by testbeam measurements of realistic prototypes
- Technology has evolved, enabling reduction of cost and complexity, and the addition of new capabilities

- **Evolution** of concepts has started, using advances of silicon technology and others
- **Additional Capabilities** are studied - first and foremost the use of precision timing (<< 100 ps) - benefits and technological and system-based boundary conditions still need to be understood
- **Revolutionising** of designs is not excluded - New ideas studied in the context of circular colliders may also have merits for LCs.

The time is right for this process: Technological solutions are becoming available, and final technology choices are still a while off.

This will be exciting - In many cases no immediately obvious answers - and many “dimensions” to consider from technological aspects to running and staging scenarios and sociological aspects.

To be continued... In October in Tsukuba - hopefully in person!
Extras
The Time Line for ILC Detectors

To provide some background

<table>
<thead>
<tr>
<th>Timeline for the ILC experiments</th>
</tr>
</thead>
<tbody>
<tr>
<td>2021</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>2022</td>
</tr>
<tr>
<td>2022</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>2023</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>2024</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>2025</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>2026</td>
</tr>
<tr>
<td>2026-27</td>
</tr>
<tr>
<td>2027</td>
</tr>
</tbody>
</table>

- Funding agencies will not provide dedicated ILC detector R&D funds before the Pre-lab being established.
- For some EoIs, R&D would be needed to make LolIs.
 → driving the timing for the Lol submission
- Selection process starts with the LolIs.
 → driving the timing for the Lol decision
- Experiments are formally approved based on TPs.
- The ILC-lab is needed for approvals.
- Availability of resources is part of the approval criteria.
 → driving the timing for the TP decision
- These considerations are for the initial set of experiments. There could be more experiments proposed at later time.

From Hitoshi Murayama, yesterday

Bottom line (my interpretation):

- **2023**: Detector concepts
- **2025**: Technical layout with options
- **2027**: Proceed to TDRs, final technology choices

There is (some) time to explore new ideas!