Exploring Right Handed Neutrinos at ILC

Jurina NAKAJIMA^A, Daniel Jeans^B, Arindam Das^C, Keisuke FUJII^B

SOKENDAI^A, KEK^B, Kyungpook National Univ.^C

17,March 2021(JST)

Motivation

The right handed neutrino(RHN) can address the following big questions

- ▶ Why does matter dominate anti-matter in our universe?
- ▶ Why is neutrino mass so small?
- ▶ Do quarks and leptons unifiy?

Right handed neutrino is assumed to be a Majorana particle.($\nu = \bar{\nu}$)

Model

jurina@post.kek.jp

Current limits - Z' mass

SM like Z' coupling

[qd] ع 10⁻¹ 10 ATLAS Simulation --- Expected limit **ILC250** 0.100 $\sqrt{s} = 14 \text{ TeV}, 3000 \text{ fb}^{-1}$ Expected ± 1σ Expected $\pm 2\sigma$ $Z' \rightarrow ee$ 0.010 10⁻² — Z'_{SSM} < u > = 200 $\sigma(e^+e^- \rightarrow N^i N^i)$ [fb] 10⁻³ 0.001 10 10-4 minimal B-L model $MN_{1,2,3} = 50 \text{ GeV}$ 10⁻⁵ 10-5 MN_{1.2.3} = 100 GeV Alternative B-L model 10-6 10⁻⁶ $MN_{12} = 50 \text{ GeV}$ $MN_{1,2} = 100 \text{ GeV}$ 10^{-7} 10^{-7} 5 6 3 7.5 3.54.5 6.5 7 5.5 M_{z'} [TeV] m_{Z'}[TeV] ATLAS-TDR-LHCC2017-2018 arXiV[1812.11931]

HL-LHC prospects limit for U(1)_{B-L} model

The heavier Z' mass less constrained by LHC

jurina@post.kek.jp

2 benchmark points

Not excluded by LHC

M _N [GeV]	Mz [,] [TeV]	G1'	V _{eN} ²	σ _{LR} (ee→NN)	Event # [4000fb-1]
100	7	1	0.001	7.05E-01	1613
200	7]	0.005	1.61E-01	368
100	3	0.05	0.001	1.34E-04	0.3
200	3	0.05	0.005	2.66E-05	0.06

LCWS2021

▶ minimal U(1)_{B-L} model

 $\bullet \sigma_{LR} = \sigma_{RL} (100\%)$

▶ ILC 500 with ISR / BS

▶ Generated event # = 5000

 $Pol(-0.8, +0.3), (+0.8, -0.3) : \mathcal{L} = 1600 \, [fb^{-1}]$ $Pol(+0.8, +0.3), (-0.8, -0.3) : \mathcal{L} = 400 \, [fb^{-1}]$

Analysis tool

Fast simulation

 using Delphes with the "generic ILC detector card" recently prepared for the US Snowmass study
Friendly to newcomers

jurina@post.kek.jp

Checking generated MC particles

Reconstructed particles - Isolated e, y, µ

jurina@post.kek.jp

Reconstruction methods

After removing isolated e, μ, γ force into 4 jets (Durham) e^{-} e_{R}^{+} Search for the correct combination of jj and jje Best jet pair 1 + iso $e \rightarrow M_{ije1}$ Jet pair 1 $\rightarrow M_{ii1}$, Jet pair 2 $\rightarrow M_{ii2}$ Best jet pair 2 + iso $e \rightarrow M_{iie2}$ $F = (M_{ij1} - M_w)^2 + (M_{ij2} - M_w)^2$ We expect for " $M_{ije1} = M_{ije2}$ " $F = (M_{ije1} - M_{ije2})^2$

Choose combination with minimum F

jurina@post.kek.jp

Reconstruction of W and RHN

isolated electrons =2 && # isolated photons = 0 Choose the **best** combination

Comparison between MC and Reconstructed W Bosons and RHN

▶M_N =200 GeV

Summary

- RHN pair production has a distinctive signature of same sign leptons in the final state →Expected to be almost background free
- Carried out fast simulation for RHN pair production using Delphes miniDST framework
- ▶ Analyzed detector-simulated particles and tried to reconstruct RHNs → Looks promising!

Future plan

- Include potential backgound processes
- Consider other models of RHN

Why is an about half of *#* isolated electrons 1 in M_N=100 GeV?

M _N [GeV]	Mz [,] [TeV]	gl'	V _{eN} ²	σ _{LR} (ee→NN)	Event # [2000fb-1]
100	7	1	0.001	4.53E-02	50

Cross section with the beam polarization

$$\sigma(P_-, P_+) = \left(\frac{1-P_-}{2}\right) \left(\frac{1+P_+}{2}\right) \sigma_L + \left(\frac{1+P_-}{2}\right) \left(\frac{1-P_+}{2}\right) \sigma_R \ (\sigma_L = \sigma_R)$$

$$Pol(-0.8, +0.3), Pol(+0.8, -0.3) : \mathcal{L} = 900 \,[\text{fb}^{-1}]$$
$$Pol(+0.8, +0.3), Pol(-0.8, -0.3) : \mathcal{L} = 100 \,[\text{fb}^{-1}]$$

jurina@post.kek.jp

Current Limits and prospects - Z' mass,g1'

G1':U(1)_{B-L} gauge coupling constant

jurina@post.kek.jp

Current limits |V_{eN}|²

IV_{eN}I² : the "light-heavy" neutrino mixing matrix

CMS PAS EXO-19-019