$\widetilde{\tau}$ searches at the ILC

Teresa Núñez - DESY

- SUSY and SUSY searches
- Motivation of $\tilde{\tau}$ studies
- Limits at LHC and LEP
- Current ILC studies
- Outlook and conclusions

CLUSTER OF EXCELLENCE QUANTUM UNIVERSE

One of the promising candidates for new Physics

Explanation or hints to current SM limitations:

- gauge hierarchy problem,
- Dark Matter composition,
- current excess of matter over antimatter,
- ...

Symmetry of spacetime relating fermions and bosons

- Introduces a superpartner for each SM particle
- SM particle and SUSY partner with same quantum numbers except for the spin (1/2 difference)
- Defines R-parity: +1 SM particles, -1 SUSY particles
- SUSY particles couples as SM particles

HELMHOLTZ

QUANTUM UNIVERSE

Supersymmetry searches

Considerable effort searching for SUSY at LHC and LEP

- Mainly sensitive to production of coloured particles, gluino and squarks, most probably the heaviest ones
- Small cross sections and high background for colour-neutral states, such as sleptons, charginos and neutralinos
- Limits only valid if many dependencies between the model parameters are full filled

- High sensitivity for production of colour-neutral states, but limited by the energy
- Limits are valid for any value of the model parameters not shown in the exclusion plots

Not evidence of SUSY up to now, exclusion/discovery limits set

HELMHOLTZ

DESY

Supersymmetry searches

ILC ideal environment for SUSY studies

- Electron-Positron collider at \sqrt{s} = 250-500 GeV with energy upgradability (1TeV)
- Electrons (80%) and positrons (30%) polarisations
- Well defined initial state: 4-Momentum and spin configuration
- Clean and reconstructable final state (near absence of pile-up)
- Hermetic detectors (almost 4π coverage)
- Triggerless operation

Triggerless operation -> huge advantage for precision measurements and unexpected signatures

Motivation for $\tilde{\tau}$ searches

Searching SUSY focused on best motivated NLSP candidates and most difficult scenarios

$\widetilde{\tau}$ satisfies both conditions

Scalar superpartner of T-lepton

- Two weak hypercharge eigenstates ($\tilde{\tau}_{R}, \tilde{\tau}_{L}$) not mass degenerate
- Mixing yields to the physical states ($\tilde{\tau}_1, \tilde{\tau}_2$), being the lightest one with high probability the lightest sfermion (stronger trilinear couplings)
- With assumed R-parity conservation:
 - pair produced (s-channel via Z^0/γ exchange, lowest σ with no coupling to Z^0)
 - decay to LSP and T, implying more difficult signal identification than the other sfermions

SUSY models with a light $\tilde{\tau}$ can accommodate the observed relic density ($\tilde{\tau}$ - neutralino coannihilation)

Limits at LHC and LEP

$\tilde{\tau}$ searches at LEP

Valid for any mixing and any values of the not shown parameters

HELMHOLTZ

6

DFS

Limits at LHC and LEP

$\tilde{\tau}$ prospects at HL-LHC

Not discovery potential for $\tilde{\tau}$ coannihilation scenarios or $\tilde{\tau}_{R}$ pair production

Expected gain in sensitivity to direct $\tilde{\tau}$ production

CMS PAS FTR-18-010

ILC Study: conditions and tools

$\tilde{\tau}$ searches in worst scenario using SGV fast simulation

- Mixing angle set to 53 degrees (lowest cross sections)
- Focused on small mass differences ($\Delta M < 11 \text{ GeV}$)
- Cross-check larger mass differences

ILC experimental conditions

- Polarization P(e⁻,e⁺)=(+80%,-30%)
- \sqrt{s} = 500 GeV with 1.6 ab⁻¹ integrated luminosity (H-20, I-20 ILC500)

Event reconstruction using SGV adapted to the ILD detector concept at ILC

- Signal: Phytia 6.422
- Background: Whizard 1.95 (standard "DBD" background samples)

Not signal in the calorimeter closest to the beam pipe (the BeamCal)

Root ntuples for analysis

Previous preliminary study

Signal characterization

Signal characterization (ctd.)

Signature:

- large missing energy and momentum
- high acollinearity, with little correlation to the energy of the decay products
- large fraction of detected activity in central detector (isotropic production of scalar particles)
- unbalanced transverse momentum
- no forward-backward asymmetry

Background

SM processes with real or fake missing energy

Irreducible

• ZZ -> vvtt, WW -> tv tv

Almost irreducible

2-T production partially escaping detection

- ee -> ττ, ZZ -> vvII, WW -> lv lv (I = e or μ)
- ee -> ττ + ISR, ee -> ττ ee, γγ -> ττ

yy interactions

4-fermion production with two

of the fermions being neutrinos and two leptons

General cuts

Properties $\widetilde{\tau}$ -events "must" have

Maximum jet momentum:

- Missing energy (E_{miss}). E_{miss} > 2*MLSP GeV
- Visible mass (mvis). mvis < 2*(Mτ̃ MLSP) GeV
- Momentum of all jets (pjet). pjet < 70% Beam Momentum (or Mτ̃/MLSP dependent)
- Two well identified au's and little other activity

Above 95 % signal efficiency for each of these cuts (excluding for the τ-identification)

$$P_{max} = \frac{\sqrt{s}}{4} (1 - (\text{MLSP} - M\tilde{\tau})^2)(1 + \sqrt{1 - \frac{4M\tilde{\tau}^2}{s}})$$

HELMHOLTZ
| GEMEINSCHAFT

CLUSTER OF EXCELLENCE QUANTUM UNIVERSE

General cuts (ctd.)

Properties $\widetilde{\tau}$ -events "might" have but background "rarely" has

- Missing transverse momentum (ptmiss). ptmiss limit depending on mass difference
- Large acoplanarity (thetaacop). 0.2 rad < thetaacop < 2. rad
- Large transverse momentum wrt. thrust-axis (rho). rho limit depending on mass difference
- High angles to beam (thetaptot). 0.79 rad < thetaptot < 2.84 rad

Cuts against properties of irreducible sources of background

- Charge asymmetry (cha_asym: Σ*charge* * cos(*polar_angle*)). char_asym > -1
- Difference between visible mass and Z mass (Z_peak). Z_peak > 4 GeV

Properties that the background often "does not" have

- Low energy in small angles. Therefore, demand energy in 30 degrees cone around the beam axis to be below a limit depending on mass difference
- Low energy of isolated neutral clusters. Therefore, demand maximum momentum of isolated neutral clusters to be below 10% beam momentum

General cuts (ctd.)

Main sources remaining background:

- WW going to TTVV
- γγ going to 4 fermions

Beam polarisation dependence

Polarisation	Signal	ee -> ttvv	aa->ttll	aa->IIII
P(e ⁻ ,e ⁺)=(+80%,-30%)	7.4	1.7	0.2	0.02
P(e ⁻ ,e ⁺)=(-80%,+30%)	5.7	28	0.2	0.02
Unpolarised	6	12	0.2	0.02

MT=247GeV, ΔM=10GeV

P(e⁻,e⁺)=(+80%,-30%) clearly enhance Signa/Background ratio

95%CL exclusion defined as $S > 2\sqrt{S+B}$

Polarisation also crucial for parameter determination

Detailed study $\Delta M = 2$ (3) GeV region

Analysis of ISR photons

Select events with high transversal momentum due to isolated photons

ELMHOLTZ GEMEINSCHAFT pjet: sum of momentum of jets

Transvesal momentum (pt): sum of pt of all particles

Limits valid for any mixing

Valid for all values of the not shown model parameters

18

Outlook and conclusions

Next steps

- Use contribution of both polarisations: P(e⁻,e⁺)=(+80%,-30%) and (-80%,+30%)
- Study the region with $\Delta M < M\tau$ (on going)
 - signal samples created with Whizard
 - vertex displaced by hand based on decay width
- Use full reconstructed background samples
- Increase statistics

- Effect of τ polarisation from $\tilde{\tau}$ decay
- Exclusion and discovery limits for $\tilde{\tau}$ pair production at the ILC have been computed
- No dependence on hidden SUSY parameters have been imposed for the validity of the limits
- Capability of the ILC for discovering/excluding $\tilde{\tau}$'s close to the kinematic limit, even in the worst scenario, has been shown

21

Limits at LHC and LEP

$\widetilde{\tau}_{\textbf{R},\textbf{L}}^{*}\widetilde{\overline{\tau}_{\textbf{R},\textbf{L}}}\rightarrow \textbf{2}\times\tau\widetilde{\chi}_{\textbf{L}}^{\textbf{0}}$ ກ(<u>x</u>_0^0) [GeV] 250 ATLAS SR-combined √s=13 TeV, 139 fb⁻¹ Expected Limit $(\pm 1 \sigma_{avn})$ All limits at 95% CL 200 Observed Limit (±1 of theory) 150 100 50 250 300 350 400 150 200 100 450 m(t) [GeV]

arXiv:1911.06660v1 [hep-ex]

ATLAS

- Dataset: 77.2 fb⁻¹ @ \sqrt{s} = 13 TeV
- Two models: $\tilde{\tau}$ assumed to be mass-degenerate or purely $\tilde{\tau}_{\rm L}$
- Not mixing
- For purely $\tilde{\tau}_{L}$ model, strongest limit set at 125 GeV
- Mass-degenerate (more optimistic) limit between 90 (closing gap with LEP) and 150
 GeV for nearly massless neutralino
 arXiv:1907.13179v2 [hep-ex]

- Dataset: 139 fb⁻¹ @ \sqrt{s} = 13 TeV pp
- Two $\tilde{\tau}$ assumed to be mass-degenerate
- Not mixing
- 100% decay into a bino-like neutralino and τ-lepton

CMS

ILC studies

[\] 250 ^{dS}] 250 200

150

NLSP : $\tilde{\tau}_1$

Exclusion

Discovery

Previous ILC searches

Does not cover small $\Delta M = (M\tilde{\tau} - MLSP)$

500 fb⁻¹ at \sqrt{s} = 500 GeV $P(e^{-},e^{+})=(+80\%,-30\%)$

> Limits only valid up to ΔM 3-4 GeV (no dedicate low ΔM analysis)

General cuts (ctd.)

Two well identified τ 's and little other activity

- Number of charged particles (ncha). 1< ncha < 6
- Number of clusters identified as T (nclu). nclu = 2 or 3
- T-indentification
- Total charge (totcharge). totcharge = 0, +/- 1

Tau identification

- Pattern of charged tracks from T-decay:
 - Exactly two jets with charged particles
 - 1 or 3 charged particles in each charged jet, with total charge +/-1
 - Two jets with opposite charge
- Reduction of background from sources with leptons not from T-decays
 - Two charged jets not made by single leptons with same flavour
 - None of the jets made by single positron (RL beam polarization)
 - Most energetic jet should not be a single electron

HELMHOLTZ

CLUSTER OF EXCELLENCE

Signal efficiency ~ 40% but reduce the background by ~ 94 %

Detailed study $\Delta M = 2$ (3) GeV region

Analysis of ISR photons

Improves limits by selecting events with high transversal momentum and isolated photons

Effect of τ polarisation from $\tilde{\tau}$ decay

Energy distribution of products from decays depends on au polarisation

au production and decay simulated using TAUOLA

FINSCHAFT