

Measurement of the Higgs branching ratio BR ($H \rightarrow \gamma \gamma$) at 3 TeV CLIC

LCWS 2021, 15-18 March 2021

Goran Kacarevic¹, I. Božovic-Jelisavcic¹, I. Smiljanic¹, T. Jovin¹, N.Vukasinovic¹, M. Radulovic², J. Stevanovic²

on behalf of CLICdp Collaboration

¹Vinca Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia

²University of Kragujevac, Faculty of Science, Kragujevac, Serbia

Overview

- CLIC Detector
- Higgs to di-photon decays at future colliders
- $H \rightarrow \gamma \gamma @ 3 \text{ TeV CLIC}$
- Method of the analysis
- Results
- Summary

CLIC Detector

Mature lepton-collider project aiming for multi-TeV energies that can explore SM and BSM physics. Ready to be built already in 2026.

- 4T superconducting solenoid
- All-silicon low mass vertex and tracking detectors
- High-granularity calorimetry inside magnetic field
- Optimized for Particle Flow reconstruction
- Excellent performance of photon identification and reconstruction*
 - Photon identification efficiency ~ 99%
 - Photon energy resolution of 2%-3% due to optimized ECAL sampling term

*Analysis is done with the CLIC_ILD [CDR], but the above holds

- ~3.3.10⁶ Higgs bosons at 3 TeV
- 4.5.10⁶ Higgs bosons in all stages (with polarization)
- High Higgs production xsection at higher energy stages enables access to rare decays $(H \rightarrow \mu\mu, H \rightarrow Z\gamma, H \rightarrow \gamma\gamma)$
- Staged approach enables combination of individual measurements in a global fit (model independent /dependent, EFT)

CLICdet: The post-CDR CLIC detector model

Higgs to di-photon decays at future colliders

ATLAS-CONF-2018-028

State-of-the-art from LHC: Combined production at ATLAS,13 TeV, 80 fb⁻¹ $\sigma \times BR = (60.4 \pm 6.1 \text{ (stat.)} \pm 6.0 \text{ (exp.)} \pm 0.3 \text{ (theo.)}) \text{fb}$

All future e+e- project nicely complements HL-LHC results, improving precision of g_{Hyy} coupling down to 1%

CERN-LPCC-2018-04

CLICdp-Note-2018-002

CLICdp

November 2018

FCCee. FCC-ee 240 GeV +FCC-ee at 365 GeV Coupling +HL-LHC (in %) (in %) (in %) δg_{HZZ} 0.25 0.22 0.21 1.3 0.47 δg_{HWW} 0.44 δg_{Hbb} 1.4 0.68 0.58 1.8 1.23 1.20 δg_{Hcc} 1.03 0.83 1.7 δg_{Hgg} $\delta g_{H\tau\tau}$ 1.4 0.8 0.719.6 8.6 δg_{Huu} 3.4 4.7 3.8 1.3 $\delta g_{H\gamma\gamma}$ 3.3 δg_{HII} $\delta \Gamma_H$ 2.81.56 1.3

H→γγ analysis @ 3 TeV CLIC

- Higgs boson is coupled to photons at the loop level and thus it is sensitive to eventual contribution of BSM physics through exchange of new heavy particles
- Benchmark channel for ECAL performance at LHC
- At 3 TeV CLIC there was no full simulation result on BR(H→γγ) measurement available, only estimate based on luminosity scaling of 1.4 TeV measurement
- WW-fusion dominates Higgs production at the energies above 500 GeV
- Production cross-section can be increased by a factor of 1.48, by electron-beam polarization (-80%):(+80%), with 4:1 runtime
 - σ (Hvv) at 3 TeV is 415 fb
 - BR(H→γγ) is 0.23%
 - σ (Hvv)xBR(H→γγ) ≈0.95 fb
 - N_{signal} ≈ 4750evt/5ab⁻¹

Process	σ_{effecive} (fb)	No. evt*, 5 ab ⁻¹	No. evt. simulated
$\sigma(hvv) \times BR(h \rightarrow \gamma \gamma)$	0.95	4750	24 550
е⁺е⁻→үү	19	9.5 · 10 ⁵	3.0 · 10 ⁴
e⁺e⁻→e⁺e⁻γ	797	4 · 10 ⁶	3.0 · 10 ⁶
е+е-→е+е-үү	56	2.8 · 10 ⁵	1.5 · 10 ⁵
e⁺e⁻→vvγ	47	2.4 · 10 ⁵	2.0 · 10 ⁵
е⁺е-→∨∨үү	49	2.5 · 10 ⁵	1.6 · 10 ⁵
e⁺e⁻→qqγ	363	1.9· 10 ⁶	1.2 · 10 ⁶
e⁺e⁻→qqγγ	59	3.0· 10 ⁵	3.0 · 10 ⁵

All processes are produced with generator level cuts to reduce CPU time, requiring, among others 100 GeV < $M_{\gamma\gamma}$ < 150 GeV

Method of the analysis

- **Observable** to measure $\sigma(H\nu\nu) \times BR(H \to \gamma\gamma) \sim N_s$
- Number of signal events N_s will be determined from selected experimental data (or pseudo-data)
- Higgs candidate definition isolate and identify two Higgs candidate photons
- **Preselection -** reduction of the high cross-section background
- MVA selection signal to background separation with optimised statistical significance S
- **PDF functions (** f_s and f_b) mathematical description of signal and background
- **Pseudo-experiment** combined fit of di photon invariant mass distribution: $f(m_{\gamma\gamma}) = N_s \cdot f_s(m_{\gamma\gamma}) + N_b \cdot f_b(m_{\gamma\gamma})$
- 5000 Toy-MC experiments pull distribution
- Relative statistical uncertainty of the measurement RMS of the pull distribution

Higgs candidate definition

- Photon isolation: 14 mrad cone energy < 20GeV
 - Reduces background processes with FSR
 - 23% background rejection. Signal loss < 0.1%
- *p*_T > 15 GeV
 - Removing photons from ISR and Beamstrahrlung
- Exactly 2 isolated photons 77.7% of reconstructed signal events
 - 14.8% events with one photon reconstructed (6% below barrel region,...)
 - 7.5% of events with 3 or more reconstructed photons

Signal efficiency is ~77.7 % by definition of the Higgs candidate.

Preselection

- Preselection efficiency: 70%
- Background is reduced by a factor of 1000
- Signal to background ratio (N $_{\rm s}/\rm N_{\rm b})$ is $7.8\cdot10^{-3}$ after preselection

- Two isolated photons (Higgs candidate)
- Candidate energy: 100 GeV < E (γγ) < 1000 GeV
- Candidate transverse momentum: 20 GeV< $p_T (\gamma \gamma) < 600$ GeV
- Candidate invariant mass: $110 \text{ GeV} < M (\gamma \gamma) < 140 \text{ GeV}$

Input v

MVA variables and performance

• 13 sensitive observables: $E(\gamma\gamma)$, $p_T(\gamma\gamma)$, $\theta(\gamma\gamma)$, $\cos \theta_{hel,}$ * $p_T(\gamma_1)$, * $p_T(\gamma_2)$, * $\theta(\gamma_1)$, * $\theta(\gamma_2)$, * $E(\gamma_1)$, * $E(\gamma_2)$, $E_{ECAL,} E_{HCAL}$

* Photons are sorted by higher value, where $p_T(\gamma_1) > p_T(\gamma_2)$

Best significance for BDTG > 0.32 BDTG efficiency: 62%

MVA results

Results after MVA selection					
5 ab ⁻¹	Signal Events	Background events	Significance		
Without polarization	2 062	60 327	8.3		

Polarization will increases cross-sections for signal and background by a factor of 1.48

Total signal efficiency (BDTG + preselection): 43% No. of signal evt. after preselection and MVA: 2062/5ab⁻¹

PDF functions

Toy MC experiments

Pull distribution from 5000 Toy MC experiments

Uncertainties of the measurement

3 TeV CLIC 5 ab ⁻¹ (5000 Toy MC)	Preliminary
Signal selection efficiency $\boldsymbol{\epsilon}_{s}$	43 %
$\delta (\sigma x BR)_{stat.}$	8.3 %

Effect	Systematic Uncertainty
1) Uncertainty of the luminosity spectrum reconstruction	0.15%
2) Uncertainty of the integrated luminosity	<1%
3) Uncertainty of photon identification efficiency	2%
4) Photon energy resolution	negligible
Total systematic uncertainty	2.2%

Considered systematic effects

- 1. Luminosity spectrum [arxiv.org/abs/1608.07538]
- 2. Integrated luminosity uncertainty of <1% [arxiv.org/abs/1006.2539]
- Uncertainty of photon identification efficiency (1%) [CLICdp-Note-2018-005.pdf]
- 2% relative uncertainty of the sampling term [<u>CLICdp-Note-2017-001.pdf</u>] → uncertainty of photon energy resolution of ~40 MeV

Authors intend to publish paper that is currently under Collaboration review. In this sense, presented results are preliminary.

- Realistic simulation of experimental measurement of $\sigma(Hvv) \times BR(H \rightarrow \gamma \gamma)$ at 3 TeV CLIC
- 5 ab⁻¹ of simulated data with 8.3 % statistical dissipation of the counted number of signal events
- Systematic uncertainty is estimated to be 2.2%, dominantly originating from uncertainty of photon identification efficiencyThis results completes set of individual CLIC $\sigma(Hvv) \times BR(H \rightarrow \gamma \gamma)$ measurements at energies above 1 TeV

Back up

clc

Dependence on ECAL Resolution in fast simulation at CLIC at 1.4 TeV

- Differences due to non-Gaussian tails and non-linearity in full simulation
- Improvement of sampling term 20% → 5%: rel. stat. uncertainty: 13.7% → 12.1% (with constant term) rel. stat. uncertainty: 12.9% → 10.5% (no constant term)

Credit: C. Grefe

Higgs to di-photon decays at colliders

