Software for Future Colliders **Challenges and Opportunities**

LCWS 2021

17.03.21

Frank Gaede, DESY

Outline

- core tools and framework
- simulation and reconstruction tools
- improving (high level) reconstruction
- machine learning and Al
- modernising the framework
 - MarlinMT, Key4HEP, EDM4hep
- Grid Computing
- IDT-WG3 Software WG
 - Mandate and first activities
- Conclusion and Outlook

LCIO and Marlin

ilc Soft

Setting the foundation for common software development

- the linear collider community has started to develop common software in 2003
- introducing a common event data model: LCIO
 - providing the *language* and a file format
- introducing a simple to use framework: **Marlin**
 - allow all LC groups to develop their algorithms in a common software ecosystem

a flexible, generic and easy to use software ecosystem provides the foundation for all future collider developments

- progress in physics analysis
- optimising the detector concepts

DD4hep geometry toolkit

defining the detector geometry and different views on it

- LC community has developed a generic detector geometry system - based on best practises by ILC, CLIC, LHCb
- supporting the full life cycle of the experiment
- providing components and interfaces for
 - full simulation, reconstruction, conditions, alignment, visualisation and analysis
- adopted also by CMS and LHCb

FCC-hh

Detector models in DD4hep

realistic description of active and passive materials

- all LC detector concepts have realistic and detailed detector models in DD4hep with
 - gaps and imperfections, dead material, ...
- crucial for realistic simulation and reconstruction
- surfaces w/ material properties for energy loss and multiple scattering in track reconstruction
- full simulation w/ Geant4 from any detector model that is described in

Ę

Tracking in iLCSoft

pattern recognition and Kalman-Filter

- generic tracking API MarlinTrk based on DDRec material surfaces
- many pattern recognition algorithms exist, e.g.
- ConformalTracking:
 - generic algorithm that works for all Si-Trackers
 - used by CLICdet and SiD (also works for ILD inner)

ILD

10

achieve excellent tracking efficiencies and resolution w/ realistic tracking codes

Particle Flow Algorithms

highly granular calorimeter reconstruction

- all current detector concepts for LC are based on highly granular calorimeters
 - optimised for the Particle Flow Algorithm
- PandoraPFA is the de facto standard used by ILD, SiD and CLICdp
- alternative PFA algorithms exist and provide possibility to cross check
 - Arbor (CEPC), April (SDHCal prototype)

High Level Reconstruction

analysing the Particle Flow Objects

δλ_{HHH} improves by 40% w/ perfect jet clustering

- **High-Level reconstruction** algorithms are crucial to achieve the ultimate physics reach of detectors
- vertex finding and flavor tagging: LCFIPlus
- PID tools: dE/dx, TOF, shower shapes,...
- Jet clustering: Durham, Valencia, ...
- very active field of development
 - already good set of tools available
- further improvement in HLR tools often directly impacts the final physics performance

Machine Learning for LC physics

ilc SOft

applying AI to further improve the LC physics reach

some selected examples - many more talks at LCWS ... see **PD4 session on Wednesday**

jet clustering with DNNs see talk M.Kurata Tuesday

- machine learning and deep learning offer exciting possibilities for improving the physics reach
- however not always immediately better than classical algorithms
- will see many more of this in the coming years ...

fast shower simulation with generative networks

see talk <u>E.Eren Tuesday</u>

see talk M.Basso Thursday

aim at extending the flavour tagging to ssbar

Getting High: High Fidelity Simulation of High Granularity Calorimeters with High Speed, E. Buhmann ,S. Diefenbacher, E. Eren, F. Gaede, G. Kasieczka et al. (May 11, 2020), arXiv 2005.05334

Modernising iLCSoft

work needed for the next decade(s)

- complete software stack for full simulation and reconstruction exists
- heavily used by ILD, CLICdp, CEPC, SiD and partly FCC-ee
- need to maintain this functionality while making the software fit for the next decades:
 - memory per core decreases
 - multi-core architectures more dominant
 - need parallel workflows
- develop new tools in parallel, e.g. MarlinMT
 - proof-of-concept WIP
- need to address heterogeneous computing:
 - GPU, FPGA, ...
 - should be able to benefit from developments for HL-LHC

Performance of Julia for High Energy Physics Analyses, S.Strube, M. Stanitzki arXive 2003.11952

MarlinMT - Parallelising the Marlin Framework, R.Ete, F.Gaede, J.Benda, H.Grasland https://doi.org/10.1051/epjconf/202024505022

Key4hep

ilc Soft

turnkey software stack for all future colliders

- HEP community decided to develop a common turnkey software stack – for future collider studies
- Take best tools available and provide necessary interfaces
 - Based on positive experience with iLCSoft
- Involved communities: CEPC, CLIC, FCC, ILC,...
 - Supported by HSF and CERN and AIDAinnova
- For ILC a transition to key4hep should be a smooth evolution rather than a revolution
- Need to keep battleproven iLCSoft framework and simulation and reconstruction chains in place for physics analyses and detector optimization for the time being

see talks by <u>P.Fernandez</u> and <u>V.Volkl</u> on Monday

- moving from iLCSoft to key4hep offers great opportunity to modernise the software stack
- however need a well defined migration strategy helped by the fact that a lot of tools (DD4hep, PandoraPFA,...) are already used in iLCSoft
- MarlinWrapper will facilitate this

PODIO and **EDM4**hep

modernising the LCIO event data model

- PODIO: event data model toolkit
 - based on storing PODs (plain old data structures)
- EDM4hep uses PODIO to define a generic EDM for all future colliders
 - largely based on LCIO- EDM
 - ROOT I/O or SIO
 - offers more modern API and faster read times
- potentially the most difficult to replace in existing code base during a transition from iLCSoft to Key4Hep...

ILCDirac

managing large scale productions for ILC and CLIC

- central, large scale Monte Carlo production campaigns done with ILCDirac
 - "ILCDIRAC, a DIRAC extension for the linear collider community" DOI: 10.1088/1742-6596/513/3/032077
 - managed by CERN/CLICdp
- also individual user jobs done with ILCDirac
- resources for ILC-VO provided by all/most large EGI Grid sites
 - up to now no resource management for CPU done inside ILC-VO
 - rely on resources provided voluntarily by sites
 - typically a very small percentage of what they provide for LHC
- storage provided as needed by contributing labs: DESY, CERN, KEK,...

Resources

diracgrid.org

see talks by A.Sailer and H.Ono on Monday

example current large scale Monte Carlo production for ILD

IDT-WG3 Software Working Group

preparing the ILC pre-lab

- Software and Computing working group created
- advance SW&Comp for the ILC in the IDT phase
- open to everyone interested in contributing to ILC software and computing activities
 - contact us if you want to get involved

WG3 Organisation and mandates

MANDATE AND WORKPLAN OF IDT-WG3-Soft

Conveners: Frank Gaede, Daniel Jeans, Jan Strube

Indico: https://agenda.linearcollider.org/category/267/

Mandate:

- 1. To contribute to enlarging the ILC community by bringing in new people and groups and facilitating the start-up of their activities.
- 2. To estimate and plan the computing resources needed for the ILC (space, power, networks, hardware, manpower on site/campus, ...) and to establish software and computing as central topics for the pre-lab in support of the EOI/LOI process.
- 3. To ensure connection to and ILC representation in relevant activities beyond ILC, e.g. key4hep, IRIS-HEP, or in the context of the ECFA Higgs Factory study or Snowmass. The use of common software will facilitate the merger of the different groups after the selection of experiments.
- 4. To coordinate and request Grid resources (storage and CPU) at different Grid sites for ILC accelerator, detector and physics studies under the ILC VO.

Supporting the LC community

tutorials, documentation, examples

- quite some activity for promoting ILC software and analysis triggered by snowmass process in the US (to be continued by IDT-WG3-SW):
 - generic ILC-detector Delphes card
 - delphes2LCIO tool
 - definition of mini-DST format
 - large SM samples available
 - simple analysis examples w/ ROOT/LCIO only
 - also in Jupyter notebook form -> direct access to data
 - a number of (beginners) tutorials:
 - · go there to get started w/ ILC

http://ilcsnowmass.org/

ILC Computing

Computing model and resources

- for the preparation of the ILC it is important to have a realistic and reliable estimate of the required computing resources
 - during IDT, pre-lab phase: EOIs, LOIs, TDRs
 - on campus and at the collision point
- last estimate done in 2014 and updated in 2017
 - need to iterate taking recent developments and trends into account

Collision Point Surface-Campus

Summary and Outlook

- iLCSoft provides the **framework**, **simulation** and **reconstruction** tools for detector and physics studies for ILC, CLIC and beyond
 - developed as a LC community effort for more than 15 years
- currently see a lot of activity in developing new HLR algorithms
 - Classical as well as Machine Learning
- in 2020 we started a new future collider community wide effort to put together a modern turnkey software stack: **Key4Hep**
 - transition of existing iLCSoft tools to Key4hep need careful preparation
 - challenging to keep full functional code base at all times
- IDT-WG3-SW working group created
 - aiming at increasing the ILC (SW) community and providing the support and coordination to accompany this development

