Hunting scalar lepton partners

- an example of direct BSM searches at lepton colliders -

Sebastian Baum

Stanford Institute for Theoretical Physics

Stanford University

Also known as sleptons to the members of a particular BSM sect...

Hunting scalar lepton partners

- an example of direct BSM searches at lepton colliders -

Sebastian Baum

Stanford Institute for Theoretical Physics

Stanford University

Lepton colliders are great for precision physics...

... but what about direct searches for new physics?

... but what about direct searches for new physics?

LHC sets strong bounds on lots of BSM scenarios!

... but what about direct searches for new physics?

Electro(weak) colliders for new electroweak physics!

Electro(weak) colliders for new electroweak physics!

PHYSICAL REVIEW D **102**, 015026 (2020)

Hunting for scalar lepton partners at future electron colliders

Sebastian Baum[®], ^{1,2,*} Pearl Sandick[®], ^{3,†} and Patrick Stengel[®], ^{2,‡}

```
[Farrar&Fayet '80; Tsukamoto+ '95; Nojiri '95; Feng&Peskin '01; Freitas+ '03; Boos+ '03; Freitas, v. Manteufel&Zerwas '04; Martyn '04; Battaglia+ '05; Buckley+ '08; Ellis, Olive&Sandick '08; Bechtle+ '10; Berggren '13; Endo+ '13]
```


A "simplified" model

A "simplified" model

Standard Model +

 Spin-zero state with Q = -e and lepton (flavor) number

A "simplified" model

Standard Model +

 Spin-zero state with Q = -e and lepton (flavor) number

 Q = 0 fermion without lepton number ("neutralino")

Opens decay channel

$$(\tilde{\ell}^{\pm} \to \chi \ell^{\pm})$$

$$\mathcal{L} \supset |D_{\mu}\tilde{\ell}|^{2} - m_{\tilde{\ell}_{i}}^{2} |\tilde{\ell}_{i}|^{2} + \bar{\chi}(iD - m_{\chi})\chi - (\kappa \tilde{\ell}_{i}^{\dagger} \bar{\chi} \ell_{i} + \text{H.c.})$$

Standard Model +

- Spin-zero state with Q = -e and lepton (flavor) number
- Q = 0 fermion without lepton number ("neutralino")

$$\bullet \quad \begin{pmatrix} \widetilde{\ell}_1 \\ \widetilde{\ell}_2 \end{pmatrix} = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} \widetilde{\ell}_L \\ \widetilde{\ell}_R \end{pmatrix}$$

$$\mathcal{L} \supset (D_{\mu}\tilde{\ell}|^{2}) - m_{\tilde{\ell}_{i}}^{2} |\tilde{\ell}_{i}|^{2} + \bar{\chi}(iD - m_{\chi})\chi - (\kappa\tilde{\ell}_{i}^{\dagger}\bar{\chi}\ell_{i} + \text{H.c.})$$

Standard Model +

- Spin-zero state with Q = -e and lepton (flavor) number
- Q = 0 fermion without lepton number ("neutralino")

$$\bullet \quad \begin{pmatrix} \widetilde{\ell}_1 \\ \widetilde{\ell}_2 \end{pmatrix} = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} \widetilde{\ell}_L \\ \widetilde{\ell}_R \end{pmatrix}$$

Model dependent (if multiple decay channels allowed)

2021-03-17 Sebastian Baum 13

Is this good for anything?

"slepton" + "neutralino"

"slepton" + "neutralino"

Appear in well-motivated more complete (supersymmetric) UV models

Dark Matter Model Building

- Slepton co-annihilation
- left-right mixed slepton enhances neutralino pair-annihilation (incredible bulk)

[Ellis+ '98, '01; Buckley, Hooper&Kumar '13 Pierce, Shah&Freese '13; Fukushima+ '14; Baker&Thamm '18; Duan+ '19]

"slepton" + "neutralino"

Appear in well-motivated more complete (supersymmetric) UV models

Dark Matter Model Building

- Slepton co-annihilation
- left-right mixed slepton enhances neutralino pair-annihilation (incredible bulk)

(focus on smuons and staus!)

Crank the collider simulation...

Simple final state:

- two charged leptons
 - + missing energy

Crank the collider simulation...

[SB+ 2004.02834

Simple final state:

two charged leptons+ missing energy

Background process	No. of samples
$e^+e^- \to \mu^+\mu^-$	10^{7}
$e^+e^- \rightarrow \mu^+\mu^- + 2\nu$	10^{7}
$e^+e^- ightarrow \mu^+\mu^- + 4\nu$	5×10^{6}
$\gamma\gamma o \mu^+\mu^-$	10^{9}
$\gamma\gamma o \mu^+\mu^- + 2\nu$	10^{7}
$\underline{\gamma\gamma \to \mu^+\mu^- + 4\nu}$	107

Sensitivity for this simple cut & count analysis:

<u>smuons</u>

And what about staus?

Use $e^{\pm}\mu^{\mp} + \cancel{E}$ final state!

2021-03-17 Sebastian Baum 20

Sensitivity for this simple cut & count analysis:

Sensitivity for this simple cut & count analysis:

How much luminosity is needed?

smuons with mostly right-handed beams

staus with mostly right-handed beams

Reach at $\sqrt{s} = 250 \text{ GeV}$

Similar story for new charged fermions...

Conclusions

- Any future electron collider would have ~immediate reach to new (EW-) charged physics up to √s/2
 - fills some important holes left
 by the LHC
 (even at rather low √s!)
- Polarization would be very helpful!

Smuon/stau pair production cross sections

Polarized pair-production cross section

$$\frac{d\sigma_{LL/RR}(e^+e^- \to \tilde{\ell}_i\tilde{\ell}_i)}{d\cos\theta} = \frac{\pi\alpha_{\rm EM}^2}{2s} \left[1 + g_{\tilde{\ell}}^{ii}g_{LL/RR} \frac{s}{s - m_Z^2} \right]^2 \times \left(1 - \frac{4m_{\tilde{\ell}}^2}{s} \right)^{3/2} \sin^2\theta,$$

Effective slepton-slepton-Z coupling

$$g_{\tilde{\ell}}^{ii} = \begin{cases} \frac{\cos^2 \alpha}{\sin(2\theta_W)} - \tan \theta_W & \text{for } \tilde{\ell}_i = \tilde{\ell}_1, \\ \frac{\sin^2 \alpha}{\sin(2\theta_W)} - \tan \theta_W & \text{for } \tilde{\ell}_i = \tilde{\ell}_2, \end{cases}$$

Effective electron-electron-Z coupling

$$g_{LL} = \frac{1}{2}(\cot\theta_W - \tan\theta_W),$$

$$g_{RR} = -\tan\theta_W$$
.

Smuon/stau pair production cross sections

Polarized pair-production cross section

$$\frac{d\sigma_{LL/RR}(e^{+}e^{-} \to \tilde{\ell}_{i}\tilde{\ell}_{i})}{d\cos\theta} = \frac{\pi\alpha_{\rm EM}^{2}}{2s} \left[1 + g_{\tilde{\ell}}^{ii}g_{LL/RR} \frac{s}{s - m_{Z}^{2}} \right]^{2} \times \left(1 - \frac{4m_{\tilde{\ell}}^{2}}{s} \right)^{3/2} \sin^{2}\theta,$$

coupling

Effective slepton-slepton-Z cou

$$g_{\tilde{\ell}}^{ii} = \begin{cases} \frac{\cos^2 \alpha}{\sin(2\theta_W)} - \tan \theta_W & \text{for } \tilde{\ell}_i = \tilde{\ell}_i \\ \frac{\sin^2 \alpha}{\cos^2 \alpha} - \tan \theta_W & \text{for } \tilde{\ell}_i = \tilde{\ell}_i \end{cases}$$

Kinematic shape independent of beam polarization, left-right mixing, etc.!

2 (w w)

 $g_{RR} = -\tan\theta_W.$

Beam polarization matters! (for right-handed sleptons)

Mostly left-handed beams

Mostly right-handed beams

How much luminosity is needed?

smuons with mostly left-handed beams

and with mostly right-handed beams

Or, in terms of the branching ratio:

right-handed smuons

<u>left-handed smuons</u>

34

How much luminosity is needed for staus?

