Reconstruction of *b***- and** *c***- jets at** e^+e^- **Higgs Factories with ParticleFlow detectors**

International Workshop on Future Linear Colliders, LCWS2021

Yasser Radkhorrami^{1,2}, Jenny List ¹

¹DESY, Hamburg ²Universität Hamburg, Hamburg

March 18, 2021

CLUSTER OF EXCELLENCE QUANTUM UNIVERSE

Most frequent Higgs decay mode: $H \rightarrow b\bar{b}$

Conclusions

Higgs production mechanisms and decay modes at e^+e^- colliders

 Higgs strahlung is dominant Higgs production mechanism at 250 GeV

Mis-reconstruction of bb invariant mass due to missing neutrino energy from semi-leptonic decays

DESY.

Can the missing momentum be retrieved from event and decay kinematics?

Kinematic Fitting and Jet Error Parametrisation

Performance Results Conclusion

Concept of ν -correction in a semi-leptonic decay

- Find heavy-quark jets: Identify b or c jet \rightarrow flavour tag
- ► Find semi-leptonic decay(s): Identify lepton in jet if present → possible using detector's high granularity
- Estimate neutrino energy from decay kinematics:
 - Assign B^0 or D^0 meson mass to mother hadron.
 - Reconstruct flight direction of mother hadron from position of primary and secondary vertex.
 - Calculate neutrino momentum: up to 2-fold ambiguity.
- As proof-of-principle: CHEAT from MC truth

The neutrino momentum can be determined up to a two-fold ambiguity

Can we use overall event kinematics to decide between solutions? \Rightarrow kinematic fit!

DESY

Performance Results

Conclusions

Kinematic fit

- ▶ Kinematic fit: adjustment of measured quantities under certain kinematic constraints:
 - Energy and momentum conservation
 - Invariant masses of particles

Exploit well-known initial state in e^+e^- colliders

 \Rightarrow need error parametrization, in particular for jets

• Minimize χ^2 :

$$\chi^2(\boldsymbol{a},\boldsymbol{\xi},\boldsymbol{f}) = (\boldsymbol{\eta}-\boldsymbol{a})^T \boldsymbol{V}^{-1}(\boldsymbol{\eta}-\boldsymbol{a}) - 2\boldsymbol{\lambda}^T \boldsymbol{f}(\boldsymbol{a},\boldsymbol{\xi})$$

- η : vector of measured kinematic variables (x)
- a: vector of fitted quantities
- $\pmb{\xi}$: vector of unmeasured kinematic variables
- V: covariance matrix
- λ : Lagrange multipliers
- $f(a, \xi)$: vector of constraints

Jet specific energy resolution

Parametrize sources of uncertainties (assumed uncorrelated) in jet energy measurements (ErrorFlow):

 $\sigma_{E_{jet}} = \sigma_{Det} \oplus \sigma_{Conf} \oplus \sigma_{\nu} \oplus \sigma_{Clus} \oplus \sigma_{Had}$

> σ_{Det} : Detector resolution using track and cluster parameters

► σ_{Conf} : Particle confusion in Particle Flow Algorithm Estimated based on jet energy and neutral hadron / photon energy fractions

- \triangleright σ_{Clus} : Misassignment of particles in the jet clustering, has not been included yet
- \triangleright σ_{Had} : Mismodeling of QCD effects in parton shower and hadronization, has not been included yet

Conclusion

Performance Results

Conclusion

ErrorFlow: Jet Error Parametrisation from Particle Flow Objects (PFO) Energy

Error estimation in PFO level:

- Photons: energy error is perfectly modeled. (sigma ~ 1)
- Charged PFOs: uncertainties propagated from track fit covariance matrix
 - uncertainties 30% too small
 - possible future improvement from track refitting with specific mass hypothesis after particle ID
- Neutral Hadrons: energy and energy error are significantly overestimated. work on improvement in progress.

DESY

Performance Results

Conclusion

ErrorFlow: Jet Error Parametrisation from Particle Flow Objects (PFO) Angles

The angular uncertainties obtained directly from track parameters / cluster position errors

 \Rightarrow Scale σ_{θ} and σ_{ϕ} by factor ~ 1.3 (for photons) and ~ 1.8 (for neutral hadrons)

Reconstruction of b- and c- jets at e^+e^- Higgs Factories with ParticleFlow detectors | Yasser Radkhorrami | March 18, 2021 |

Performance Results

Conclusions

Uncertaities in jet-level: Energy

Propagation of errors from PFOs to jets:

- Transform the covariance matrix of each PFO (*E*,*x*,*y*,*z* for clusters, track parameters for charged) to (*E*,*p_x*,*p_y*,*p_z*)
- Add up covariance matrices of all PFOs
- Add confusion term for jet energy
 - calculate using jet energy composition
- Transform to (E,θ,ϕ,m)

Confusion term improves the estimate of the jet energy uncertainty, but not quite enough \Rightarrow need adjustment \Rightarrow use scaling factor 1.2 in Kinematic fit

Performance Results

Conclusions

Uncertaities in jet-level: θ & ϕ

Jet angular uncertainties need scaling factor ${\sim}1.6$

Introduction

Performance Results

Application of kinematic fit to $e^+e^- \rightarrow ZH \rightarrow \mu \bar{\mu} b \bar{b}$ events

Parameters of jets and leptons are variated within their uncertainties to satisfy 5 constraints: Conservation of momentum (hard constraints):

► p_x : e^+e^- crossing angle: 14 mrad $\Sigma p_x = \sqrt{s} \times \sin 0.007 \approx 1.75$ GeV

$$\triangleright p_y: \ \Sigma p_y = 0$$

$$\blacktriangleright p_z: \ \Sigma p_z = 0$$

Conservation of total energy (hard constraint):

•
$$E_{lab} = 2\sqrt{(\frac{\sqrt{s}}{2})^2 + (\Sigma p_x)^2}$$

Constrain di-muon mass to agree with m_Z within its natural width (soft constraint):

$$\blacktriangleright$$
 $m_Z=91.2~{
m GeV}$, $\sigma_{m_Z}=rac{2.4952}{2}$

Conclusion

DESY

Conclusion

Kinematic fit performance in $e^+e^- \rightarrow ZH \rightarrow \mu\bar{\mu}b\bar{b}$ at $\sqrt{s} = 250$ GeV

without semi-leptonic decays

Page 12/15

Performance Results

Conclusions

Kinematic fit performance in $e^+e^- \rightarrow ZH \rightarrow \mu\bar{\mu}b\bar{b}$ at $\sqrt{s} = 250$ GeV (cntd.)

without semi-leptonic decays

Improved kinematic fit performance with full CovMat of jets + scaled jet angular uncertainties

Page 13/15

Performance Results

Conclusion

Higgs mass in presence of SLDs

 $\nu\text{-correction}$ and kinematic fit on $H\to b\bar{b}$

DESY

Conclusions

Conclusions

- \blacktriangleright Higgs mass reconstruction essential eg in ZZH vs ZHH separation (Higgs self-coupling measurement)
- Heavy flavour jets are essential for Higgs physics
- Correction of semi-leptonic decays of heavy flavour jets is important for Higgs mass reconstruction
 - Neutrino momentum can be reconstructed up to a sign ambiguity
 - Ambiguity can be resolved by kinematic fit
 - Next: remove the partial cheating from the neutrino correction
- Kinematic fit exploits well-known initial state in e⁺e⁻ colliders and requires excellent understanding of jet measurement
- ▶ ILD as a Particle Flow detector provides full detail for estimating jet measurement uncertainties

BACKUP

Reconstruction of b- and c- jets at e^+e^- Higgs Factories with ParticleFlow detectors | Yasser Radkhorrami | March 18, 2021 |

International Large Detector (ILD)

Momentum Resolution

arXiv:2003.01116

• Jet Energy Resolution $(E_{PFO} + E_{\nu}^{MC})$

Page 2/22

DESY

International Large Detector (ILD)

 \blacktriangleright Impact Parameter Resolution, z_0

arXiv:2003.01116

Concept of ν -correction in a semi-leptonic decay

- Find heavy-quark jets: Identify b or c jet \rightarrow flavour tag
- Find semi-leptonic decay(s): Identify lepton in jet if present \rightarrow possible using detector's high granularity
- Estimate neutrino energy from decay kinematics:
 - Assign B^0 or D^0 meson mass to mother hadron.
 - Reconstruct flight direction of mother hadron from position of primary and secondary vertex.
 - Calculate neutrino momentum: up to 3-fold ambiguity.
- As proof-of-principle: CHEAT from MC truth
 - Lepton ID
 - Flavour tag
 - Mother hadron mass
 - Associate of reconstructed particles to secondary vertex
 - Momenta of visible decay products

The neutrino momentum can be determined up to a two-fold ambiguity

Can we use overall event kinematics to decide between solutions? \Rightarrow kinematic fit!

Closure test: fully cheated information

correcting neutrino energy

4-vector based approach

 \blacktriangleright (*E*, \vec{p})-based approach

$$\begin{split} \vec{p}_{\nu,\perp} &= -\vec{p}_{vis,\perp} \\ \vec{p}_{\nu,\parallel} &= \frac{1}{2D} (-A \pm \sqrt{A^2 - BD}) \hat{n} \\ A &= p_{vis,\parallel} (2p_{vis,\perp}^2 + m_{vis}^2 - m_X^2) \\ B &= 4p_{vis,\perp}^2 E_{vis}^2 - (2p_{vis',\perp}^2 + m_{vis}^2 - m_X^2)^2 \\ D &= E_{vis}^2 - p_{vis,\parallel}^2 \end{split}$$

$$\hat{n} = \frac{p_{v\vec{is},\parallel}}{|\vec{p_{v\vec{is},\parallel}}|}$$

DESY

The neutrino momentum can be determined up to a two-fold ambiguity

Reconstruction of b- and c- jets at e^+e^- Higgs Factories with ParticleFlow detectors | Yasser Radkhorrami | March 18, 2021 |

 closure test: apply correction with fully cheated information and compare with true neutrino energy

Correcting neutrino energy

Rapidity based approach

DESY.

Rapidity under Lorents-transformations ~ velocity under Galileo-transformations: $\omega = \omega_X + \omega'$; $\omega = \frac{1}{2} ln \frac{E + p'_{\parallel}}{E - p'_{\parallel}}$ ω : rapdity in lab frame, ω' : rapdity in rest frame of X, ω_X : rapdity of X in lab frame

Closure test: fully cheated information W $(e^+e^- \rightarrow b\bar{b}$ at $\sqrt{s} = 500$ GeV) vis350 Everthe [GeV] 300 200 $E_{\nu} = E_X - E_{vis}$ 250 $E_X = \frac{E_{vis} E'_{vis} - p_{vis}}{m_{vis}^2 + p_{vis}^2} m_X$ 150 200 150 100 $E'_{vis} = \frac{m_X^2 + m_{vis}^2}{2m}$ mcENu mcENu close 100 50 $p'_{visu} = \pm \sqrt{(\frac{m_X^2 - m_{vis}^2}{2m_V})^2 - p_{visu}^2}$ 50 28.205 Ω 50 100 200 25 E^{MC} [GeV] 250 150

The neutrino momentum can be determined up to a two-fold ambiguity Can we use overall event kinematics to decide between solutions? \Rightarrow kinematic fit!

Reconstruction of b- and c- jets at e^+e^- Higgs Factories with ParticleFlow detectors | Yasser Radkhorrami | March 18, 2021 |

Event selection

Select $e^+e^- \rightarrow ZH \rightarrow \mu \bar{\mu} b \bar{b}$ events at $\sqrt{s} = 250$ GeV with (exactly) 2-leptons + 2-jets final state:

- IsolatedLeptonTagging Training for the IDR 500 GeV samples is used,
 - 1. Lepton ID: μ^{\pm} Deposited energy in subdetectors
 - 2. Vertex: primary or secondary Significance of impact parameters (d_0, z_0)
 - 3. Isolated: not belong to jets

FastJetProcessor

- Exclusive k_t (Durham) algorithm (no overlay)
- Find smallest of (d_{ij}, d_{iB}) $d_{ij} = 2 \min(E_i^2, E_j^2)(1 - \cos \theta_{ij})$ i, j: particles, B: Beam
- $d_{ij} < d_{iB}$: combine i&j as pseudojet(p): $p_i + p_j$
- $d_{iB} < d_{ij}$: remove particle *i* from list
- Repeat iteration until d_{ij} or $d_{iB} > d_{cut}$ (threshold)

IsolatedLeptonTagging has not been trained for new software at 250 GeV yet!

DESY.

event selection

separate Higgs decay modes: $H \to b \bar{b}$, cheat from MCTruth

 $rac{2}{3}$ of $bar{b}$ jets contain at-least one semi-leptonic decay \Rightarrow Frequent $H \rightarrow bar{b}$ needs neutrino correction.

Reconstruction of b- and c- jets at e^+e^- Higgs Factories with ParticleFlow detectors | Yasser Radkhorrami | March 18, 2021 |

DESY.

Neutral PFO identification by Pandora

Majority of identified photons are true photons.

No explicit decision for mass of identified neutral hadrons due to their multiplicity.

Pandora treatment with Neutral Hadrons

What Pandora does:

DESY

- Cluster energy is assigned to PFO(massless) energy $E_{PFO} = |\vec{p}_{PFO}| = E_{cluster}$
- Neutral Hadrons are identified as neutron
- neutron mass is set for PFO \Rightarrow incosistent 4-momentum!
- ► CovMat of Neutral PFO is calculated (using inconsistent 4-momentum): CovMat $(\vec{p}, E) = J^T$ CovMat $(\vec{x}_{clu}, E_{clu}) J$

$$J = \begin{pmatrix} \frac{\partial p_x}{\partial x_c} & \frac{\partial p_y}{\partial x_c} & \frac{\partial p_z}{\partial x_c} & \frac{\partial E}{\partial x_c} \\ \frac{\partial p_x}{\partial y_c} & \frac{\partial p_y}{\partial y_c} & \frac{\partial p_z}{\partial y_c} & \frac{\partial E}{\partial y_c} \\ \frac{\partial p_x}{\partial z_c} & \frac{\partial p_y}{\partial z_c} & \frac{\partial p_z}{\partial z_c} & \frac{\partial E}{\partial z_c} \\ \frac{\partial p_x}{\partial E_c} & \frac{\partial p_y}{\partial E_c} & \frac{\partial p_z}{\partial E_c} & \frac{\partial E}{\partial E_c} \end{pmatrix}$$

 $CovMat(\vec{p}, E)$ of Neutral PFOs depend on the mass assumption.

Suggestion: Take consistent 4-momentum of massive neutral hadrons for CovMat calculations.

CovMat of Neutral PFOs

- Current CovMat calculation (MarlinReco/Analysis/AddClusterProperties) $E_{PFO} = |\vec{p}_{PFO}| = E_{clu} , p_x = E_{clu} \frac{x}{r} , p_y = E_{clu} \frac{y}{r} , p_z = E_{clu} \frac{z}{r}$
- Alternative CovMat calculation (taking consistent 4-momentum of neutral hadrons)

$$E_{PFO} = \sqrt{|\vec{p}_{PFO}|^2 + m_{PFO}^2} = \sqrt{E_{clu}^2 + m_n^2}$$

$$J = \begin{pmatrix} E_{clu} \frac{r^2 - x^2}{r^3} & -E_{clu} \frac{xy}{r^3} & -E_{clu} \frac{xz}{r^3} & 0\\ -E_{clu} \frac{xy}{r^3} & E_{clu} \frac{r^2 - y^2}{r^3} & -E_{clu} \frac{yz}{r^3} & 0\\ -E_{clu} \frac{xz}{r^3} & -E_{clu} \frac{yz}{r^3} & E_{clu} \frac{r^2 - z^2}{r^3} & 0\\ -E_{clu} \frac{xz}{r^3} & -E_{clu} \frac{yz}{r^3} & E_{clu} \frac{r^2 - z^2}{r^3} & 0\\ \frac{x}{r} & \frac{y}{r} & \frac{z}{r} & 1 \end{pmatrix} \rightarrow J = \begin{pmatrix} E_{clu} \frac{r^2 - x^2}{r^3} & -E_{clu} \frac{xy}{r^3} & -E_{clu} \frac{xz}{r^3} & 0\\ -E_{clu} \frac{xy}{r^3} & E_{clu} \frac{r^2 - y^2}{r^3} & -E_{clu} \frac{yz}{r^3} & 0\\ -E_{clu} \frac{x}{r^3} & -E_{clu} \frac{yz}{r^3} & E_{clu} \frac{r^2 - z^2}{r^3} & 0\\ \frac{E}{E_{clu}} \cdot \frac{x}{r} & \frac{E}{E_{clu}} \cdot \frac{y}{r} & \frac{E}{E_{clu}} \cdot \frac{z}{r} & 1 \end{pmatrix}$$

using error propagation, PFO angular uncertainties are calculated directly from cluster position error: $\sigma_{\theta}^{2} = \left(\frac{\partial\theta}{\partial x}\right)^{2} \sigma_{x}^{2} + \left(\frac{\partial\theta}{\partial y}\right)^{2} \sigma_{y}^{2} + \left(\frac{\partial\theta}{\partial z}\right)^{2} \sigma_{z}^{2} + \frac{\partial\theta}{\partial x} \frac{\partial\theta}{\partial y} \sigma_{xy} + \frac{\partial\theta}{\partial x} \frac{\partial\theta}{\partial z} \sigma_{xz} + \frac{\partial\theta}{\partial y} \frac{\partial\theta}{\partial z} \sigma_{yz}$ $\sigma_{\phi}^{2} = \left(\frac{\partial\phi}{\partial x}\right)^{2} \sigma_{x}^{2} + \left(\frac{\partial\phi}{\partial y}\right)^{2} \sigma_{y}^{2} + \frac{\partial\phi}{\partial x} \frac{\partial\phi}{\partial y} \sigma_{xy}$

MUST: angular and energy uncertainties remain unchanged!

CovMat of Jets

- AddClusterProperties/FourMomentumCovMat: $CovMat(cluster/track) \rightarrow CovMat(\vec{p}, E)$
 - Current CovMat calculation (inconsistent 4-momentum of neutral hadrons):

$$E_{PFO}=|\vec{p}_{PFO}|=E_{clu}$$
 , $p_x=E_{clu}\frac{x}{r}$, $p_y=E_{clu}\frac{y}{r}$, $p_z=E_{clu}\frac{z}{r}$, $m_{PFO}=m_n$

Alternative CovMat calculation (taking consistent 4-momentum of neutral hadrons)

$$E_{PFO} = \sqrt{|\vec{p}_{PFO}|^2 + m_{PFO}^2} = \sqrt{E_{clu}^2 + m_n^2} \frac{J_{(wrong)} \rightarrow J_{(right)}}{J_{(right)}}$$

$$\begin{pmatrix} E_{clu} \frac{r^2 - x^2}{r^3} & -E_{clu} \frac{xy}{r^3} & -E_{clu} \frac{xz}{r^3} & 0 \\ -E_{clu} \frac{xy}{r^3} & E_{clu} \frac{r^2 - y^2}{r^3} & -E_{clu} \frac{yz}{r^3} & 0 \\ -E_{clu} \frac{xz}{r^3} & -E_{clu} \frac{yz}{r^3} & E_{clu} \frac{r^2 - z^2}{r^3} & 0 \\ -E_{clu} \frac{xz}{r^3} & -E_{clu} \frac{yz}{r^3} & E_{clu} \frac{r^2 - z^2}{r^3} & 0 \\ -E_{clu} \frac{xz}{r^3} & -E_{clu} \frac{yz}{r^3} & E_{clu} \frac{r^2 - z^2}{r^3} & 0 \\ -E_{clu} \frac{xz}{r^3} & -E_{clu} \frac{yz}{r^3} & E_{clu} \frac{r^2 - z^2}{r^3} & 0 \\ -E_{clu} \frac{xz}{r^3} & -E_{clu} \frac{yz}{r^3} & E_{clu} \frac{r^2 - z^2}{r^3} & 0 \\ -E_{clu} \frac{xz}{r^3} & -E_{clu} \frac{yz}{r^3} & E_{clu} \frac{r^2 - z^2}{r^3} & 0 \\ -E_{clu} \frac{xz}{r^3} & -E_{clu} \frac{yz}{r^3} & E_{clu} \frac{r^2 - z^2}{r^3} & 0 \\ -E_{clu} \frac{xz}{r^3} & -E_{clu} \frac{yz}{r^3} & E_{clu} \frac{r^2 - z^2}{r^3} & 0 \\ -E_{clu} \frac{xz}{r^3} & -E_{clu} \frac{yz}{r^3} & E_{clu} \frac{r^2 - z^2}{r^3} & 0 \\ -E_{clu} \frac{xz}{r^3} & -E_{clu} \frac{yz}{r^3} & E_{clu} \frac{r^2 - z^2}{r^3} & 0 \\ -E_{clu} \frac{xz}{r^3} & -E_{clu} \frac{yz}{r^3} & E_{clu} \frac{r^2 - z^2}{r^3} & 0 \\ -E_{clu} \frac{xz}{r^3} & -E_{clu} \frac{yz}{r^3} & E_{clu} \frac{r^2 - z^2}{r^3} & 0 \\ -E_{clu} \frac{xz}{r^3} & -E_{clu} \frac{yz}{r^3} & E_{clu} \frac{r^2 - z^2}{r^3} & 0 \\ -E_{clu} \frac{xz}{r^3} & -E_{clu} \frac{yz}{r^3} & E_{clu} \frac{r^2 - z^2}{r^3} & 0 \\ -E_{clu} \frac{xz}{r^3} & -E_{clu} \frac{yz}{r^3} & E_{clu} \frac{r^2 - z^2}{r^3} & 0 \\ -E_{clu} \frac{xz}{r^3} & -E_{clu} \frac{yz}{r^3} & E_{clu} \frac{r^2 - z^2}{r^3} & 0 \\ -E_{clu} \frac{xz}{r^3} & -E_{clu} \frac{yz}{r^3} & E_{clu} \frac{r^2 - z^2}{r^3} & 0 \\ -E_{clu} \frac{xz}{r^3} & -E_{clu} \frac{yz}{r^3} & E_{clu} \frac{z}{r^3} & 0 \\ -E_{clu} \frac{xz}{r^3} & -E_{clu} \frac{yz}{r^3} & E_{clu} \frac{z}{r^3} & 0 \\ -E_{clu} \frac{xz}{r^3} & -E_{clu} \frac{yz}{r^3} & 0 \\ -E_{clu} \frac{xz}{r^3} & -E_{clu$$

ErrorFlow:

DESY

$$\mathsf{CovMat}(\vec{p}_{jet}, E_{jet}) = \sum_{PFO} \mathsf{CovMat}(\vec{p}, E) \quad : \quad \sigma_{E_{jet}}^2 = \sigma_{conf}^2 + \sum_{PFO} \sigma_{E_{PFO}}^2$$

MarlinKinfitProcessors:

 $\mathsf{CovMat}(ec{p}_{jet}, E_{jet}) o (\sigma_{ heta_{jet}}$, $\sigma_{\phi_{jet}}$, $\sigma_{E_{jet}})$

Reconstruction of b- and c- jets at e^+e^- Higgs Factories with ParticleFlow detectors | Yasser Radkhorrami | March 18, 2021 |

DESY

ErrorFlow: Jet Error Parametrisation from Particle Flow Objects (PFO) Angles

The angular uncertainties obtained directly from track parameters / cluster position errors

 \Rightarrow Scale σ_{θ} and σ_{ϕ} by factor ~ 1.3 (for photons) and ~ 1.8 (for neutral hadrons)

Reconstruction of b- and c- jets at e^+e^- Higgs Factories with ParticleFlow detectors | Yasser Radkhorrami | March 18, 2021 |

DESY.

Uncertaities in jet-level: θ & ϕ

Jet angular uncertainties need scaling factor ${\sim}1.6$

Neutrino correction hypothesis

- Assign semi-leptonic decays to jets
- Add neutrino momentum to 4-momentum of assigned jet:

Test three hypothesis for neutrino energy in each semi-leptonic decay: E_{ν}^+ , E_{ν}^- , $0 \ 3^{nSLD}$ combination of E_{ν} 's for adding to jet 4-momentum: Number of semileptonic decays in a jet: nSLD = nSLDB + nSLDC

Example:

If an event contains two jets: jet-1 contains 2 semi-leptonic decays and jet-2 contains 1 semi-leptonic decay, $27(=3^2 \times 3^1)$ combinations of E_{ν} 's are available for neutrino correction in the event:

jet-1:

DESY

comb.	1	2	3	4	5	6	7	8	9
$\vec{p}_{\nu,1}$	-	+	0	-	+	0	-	+	0
$ec{p}_{ u,2}$	-	-	-	+	+	+	0	0	0

jet-2:

comb.	1	2	3
$ec{p}_{ u,3}$	-	+	0

 $\vec{p}_{\nu,1} + \vec{p}_{\nu,2}$ is added to 4-momentum of jet-1 and $\vec{p}_{\nu,3}$ is added to 4-momentum of jet-2. $\vec{p}_{\nu,1} + \vec{p}_{\nu,2} + \vec{p}_{\nu,3} = 0$ allows fitter to neglect neutrino correction Combination with highest fit probability is chosen as best neutrino correction.

Simple neutrino correction for Higgs mass reconstruction

Neutrino energy correction:

Estimating neutrino energy as a fraction of corresponding lepton energy:

$$E_{jet}^{corr} = E_{jet} + E_{\nu} = E_{jet} + (\frac{1}{x} - 1)E_{lep}$$

Uncertainty on jet energy parametrised as:

$$\sigma_{E_{jet}}^{corr} = \frac{100\%}{\sqrt{E_{jet}}} \oplus \sigma_{\nu}$$
$$\sigma_{\nu}^{2} = \left(\frac{\sigma_{\langle x \rangle}}{\langle x \rangle^{2}}\right)^{2} E_{lep}^{2} + \left(\frac{1}{x} - 1\right) \Delta E_{lep}^{2}$$

Fixed uncertainties on angles:

$$\Delta \theta_{jet} = \Delta \phi_{jet} = 100 \,\mathrm{mrad}$$

Blue: before neutrino energy correction Orange: After neutrino energy correction

Simple correction to jet energy improves jet energy pull distribution as a measure of fit performance.

DESY

Simple neutrino correction for Higgs mass reconstruction

Bias and assymetry in m_H is removed by correcting jet energy and adding ISR

Backup

Error flow and application in kinematic fit

Jet specific energy resolution for $e^+e^-\to ZH\to q\bar{q}b\bar{b}$ process at $\sqrt{s}=350~{\rm GeV}$

- Full 4×4 CovMatrix on 4-momentum of jets $\sigma(\vec{p}, E)$:
 - σ_{Det}: computed using subdetector momentum/energy resolution
 - σ_{Conf}: computed using jet energy and particle content (charged, neutral and photon)
 - $\sigma_{\nu} = 0.73.E_l$
 - \triangleright σ_{Had} , σ_{Clus} are not accounted for error flow procedure yet.

Fixed (and wide) angular resolution: $\sigma_{\theta} = \sigma_{\phi} = 100$ mrad Kinematic fit: vary jet quantities (E, θ, ϕ) within uncertainties $(\sigma_E, \sigma_{\theta}, \sigma_{\phi})$ Improved fit probability by applying Error Flow on jet energy

DESY-THESIS-2017-045

 \Rightarrow Further improvements by error parametrization and handling sl-decays

fit constraints

momentum conservation: p_x

 ISR is initialized to satisfy momentum conservation on x direction

fit constraints

momentum conservation: p_u

ISR is initialized to satisfy momentum conservation on z direction

Fit constraints

Momentum conservation: p_z

Adding 4-momentum of neutrino improves jet fit object initialization

Proper neutrino correction for jets: improved constraint on momentum

Reconstruction of b- and c- jets at e^+e^- Higgs Factories with ParticleFlow detectors | Yasser Radkhorrami | March 18, 2021 |

fit constraints

energy conservation: E

Neutrino correction (best pre-fit \vec{p}_{ν} for succesful fits) improves start values \Rightarrow better fit object initialization

By neutrino correction, initial value of constraint function closer to target \Rightarrow fit should work better! Reconstruction of *b*- and *c*- jets at e^+e^- Hiers Factories with ParticleFlow detectors | Yasser Radkhorrami | March 18, 2021 | Page 22/22