Conceptual plan of ILD solenoid magnet manufacture Y. Makida & T. Okamura

It has been considered that final assembly of the ILD solenoid should be carried out at an assembly hall which is ground floor of the experimental cavern, because the completed ILD solenoid is too huge to be delivered from the factories.

While referring to CMS fabrication experience, we have been discussing manufacture plan with production companies.

It is reviewed that one third module of coil can be transported to the assembly hall, but there are many obstacles along the way. And large transportation cost has been estimating.

Status of research on fabrication will be presented.

Contents

- 1. Conceptual manufacture plan.
- 2. Transportations, solenoid modules and Anti-DID coils.
- 3. Summary & Consideration.

Outline of ILD Coil manufacturing process (1)

Outline of ILD Coil manufacturing process (2) Learning from CMS experience

Coil module stacked

Cold mass rotated 90° and inserted

Arrival to cavern

Contents

- 1. Conceptual manufacture plan.
- 2. Transportations, solenoid modules and Anti-DID coils.
- 3. Summary & Consideration.

Module Transportation

- Transportation of CMS modules (7.4 \times 7.4 \times 3.0 m³) was a hard task (at the limit of what can be transported on the road).
- ILD module has larger dimensions (8.0 \times 8.0 \times 2.5 m³)
- Possible route and cost for transportation have been investigated by Hitach Transport System (https://www.hitachi-transportsystem.com/en/).

Solenoid Coil Dimensions and Field

Coil Inner Diameter (mm)	7230
Coil Outer Diameter (mm)	7940
Coil Weight (ton)	170
Length (mm) Each Block Length (mm)	7350 2450
Turn × Layer	309 × 4
Nominal Current (A)	22400
Current Density (A/mm ²)	10.6
Central Field (T)	4.0
Maximum Field (T)	4.6
Support Shell Thickness (mm)	50

Land Transportation of Solenoid Coil Module

Solenoid Coil	Package
Dimension	8500 × 8500 × 3608 mm
Weight	90.0 ton (module 57 ton
Package No.	3

Carrying cond	ition	Per axle 8 wheels	Total 64 wheels			
Axle load w/o	goods	12,15 kg	97.200 kg			
Goods weight		11.25 kg	90,000 kg			
With goods Axle load		23,400 kg	187,200 kg			
	Wheel load	2,925 kg				
Ground	Pressurized area	1.60m × 7 × 4.86m = 54.43 m ²				
Pressure	Pressure	3.4 ton /m ²				

Land Transportation of Anti-DID

Anti-DID Package								
Dimension	6763 × 4382 × 3100 mm ³							
Weight	16.0 ton (coil 3.6 ton)							
Package No.	4							

From Cargo Boat to Land Transportation @Kesennuma port

From Port to ILC IR

Kesennuma Downtown

Passing Through Tunnels

Many Obstacles

- There are many traffic signs, signals, poles, lights and fences to be temporally removed.
 - 154 points (upper obstacle 60 points)
 - Trees are not counted.
 - Preparation and recovery cost may be comparable with transportation fee.

Cost Estimation & Comments by Hitachi-Trans.System

- Cost estimation is excluding removal & recovery of obstacles and keeping goods at port.
- Keeping stacking height less than GL4.9 m, number of obstacles is reduced to about 100. Keeping stacking width less than 6.0 m is more effective. So, smaller package size should be considered.

	Solenoid coil modules	Anti-DID coils
Marin Trans.	3.2M JPY (620 sea mile)	3.2M JPY (620 sea mile)
Land Trans	180M JPY(3 modules)	28M JPY (4 coils)
Sum	183.2M JPY	31.2M JPY

 Permission by road administrators and polices required. Approval by local residents for traffic regulations is necessary. This is Lab's responsibility.

Contents

- 1. Conceptual manufacture plan.
- 2. Transportations, solenoid modules and Anti-DID coils.
- 3. Summary & Consideration.

Summary & Consideration

- Transportation of coil modules is physically possible.
 - Cost reduction by smaller package size is necessary.
- Discussion with magnet products about solenoid fabrication in AH has been started, too.
 - Not only cost but also risk of transportation which needs permissions and public approval.
 - Contract by Pre-Lab has been rejected in AWLC2020. Contract will be made 2 year after ILC-Lab starts. So AH will be completed when coil winding starts.

2020/10/23	-6	-5	-4	-3	-2	-1	1	2	3	4	5	6	7	8	9	10	11
Organization	IDT Pre-Lab.						ILC Lab.										
Status	Pre-preparation			Prepa	aration		Construction/Commissioning										
Due process	Det. Proposal Sub-det. TDR																
On-site (Surface)							Land devel.	Assembly constructi	hall ion								
On-site (Underground)	Detector Hall, Access tunnel construction																
	R&D TDR																
	Bidding												Co	il Mod	ule as	semble	ed in A
Solenoid/DID	Assembly	off-site			Prep. M2 M3												
	Assembly	on-site															
	Installation	n			Cail winding in All is possible												
	Full current test																