

Silicon Pixel Tracker for the ILC

Konstantin Stefanov on behalf of LCUK 16 March 2021

Introduction

SiD microstrip tracker: 5 barrels with 4 disks on each side (ILC TDR 2013)

- Baseline: SiD's microstrip tracker
- Silicon Pixel Tracker (SPT) suggested as a next generation detector with several performance advantages
 - First proposed at LCWS2008
- Major technological advances since 2008
 - A large MAPS-based detector has been built ITS2 (ALICE)
 - Low power, fully depleted, radiation-hard MAPS developed
- The physics case remains very strong

Performance and requirements

- SiD:
 - 5 layers of Si microstrip sensors, 25 μm pitch / 50 μm readout
 - Resolution in $r\varphi \approx$ 5 µm, resolution in $rz \approx$ 5 mm
- Very clean conditions, strip occupancies are comfortable over the full angular range
- SPT
 - Reduced material over the whole range, total 3% X₀ target
 - Combining time-integrating tracking layers and timing information from the vertex detector and dedicated timing layers (pre-ECAL) for robust pattern recognition

SPT – tracking layers

5 barrels, 4 endcaps (not shown)

- The main challenge is to reduce power and therefore material
- Power dissipation ~O(100 W), can be air-cooled
- Sensors $\approx 100 \ \mu m$ thick, low mass support ($\approx 0.6\% X_o$ per layer)
- Pixel size around 50 μm × 50 μm
- 28 Gpix system, 70 m² of silicon
- Main occupancy is due to time-integrated physics events during the train, but is even cleaner than the baseline in terms of pixel occupancy
- Worst case (barrel 1): occupancy is below 10⁻⁶ due to the fine granularity

SPT – timing layers

- Single bunch timing information from the vertex detector and from dedicated timing layers just before the ECAL
- Outer timing layers
 - 3 closely spaced layers for redundancy
 - Adjacent to ECAL barrel and endcaps
 - Timing resolution of 554 ns (single bunch spacing)
 - Material budget not critical, hence evaporative cooling is acceptable
 - 150 μm square pixels
- Inner timing layers
 - The vertex detector also serves this purpose
- Track reconstruction:
 - Start with 3-hit track stubs in the outer timing layers and work inwards refining the momentum measurement as this proceeds
 - Link to stand-alone tracks in the vertex detector
 - Square pixels deliver equal precision in impact parameter resolution in $r \phi$ and r z

ITS2 (ALICE) as an excellent example

ALICE ITS2 TDR, CERN-LHCC-2013-024

- 12.5 Gpixels
- ≈30×30 µm pixels
- Outer barrel 1.48 m long
- Total 10 m² silicon
- 180 nm CMOS process

- Major advances demonstrated since 2008
- Thick epitaxial layer ~40 μm, MIP signal ~3000 e⁻
- Small sense node, low noise (10 e⁻)
- Low power $\propto (C/Q)^m$, $m = 2 \dots 4$
- Radiation hardness not an issue for ILC
- Technology is suited for larger (50-150 μm) pixels

W. Snoeys et al., NIM A871 (2017) 90–96

Readout schemes for the SPT

- Two readout schemes:
 - Time-integrating through the bunch train in the tracking layers
 - Single bunch time stamping in the timing layers

Time-integrating tracker

- Operation:
 - Each pixel stores analogue hit information on its sense node
 - The detector is read out in the long time in between the bunch trains
 - Low noise readout with sparsification
- Digitised (e.g. 5-bit) output signal from a 3×3 pixel area around a hit to provide centroid peak fitting and help understand backgrounds
- Lowest mass and power
 - Near-constant power ~O(100 W), air-cooled

Mechanical

- Geometry largely following the SiD design, but with some new ideas:
 - Less material, 100 μm thick sensors
 - Long staves made entirely from 4-8% SiC foam (5 mm thick, at most 0.45% X_0)
 - SiC is a good thermal match to Si
 - Self-supporting barrel with SiC joining blocks
 - Each half-barrel is attached to its pair of endcaps to form a rigid structure
 - The 5-layer structure provides additional stability
- Detailed study needed

Conclusions and possible next steps

- The case for a low mass, air-cooled Silicon Pixel Tracker is strong
- Combining:
 - Highly pixelated, time-integrating barrels and endcaps
 - Timing information on each BX from dedicated layers
 - Working in tandem with the vertex detector
- Next steps
 - Physics studies: track reconstruction for benchmark processes
 - Mechanical design: FEA and thermal modelling, comparing carbon fibre and SiC foam supports
 - Sensor design for minimal power, 180 nm CMOS process as a basis

