

# Monolithic Active Pixel Sensor R&D in 65 nm for

### high-resolution, minimal-mass, wafer-scale, bent tracking detectors

18.03.2021

Magnus Mager (CERN) on behalf of the ALICE collaboration



# Outline

- Starting point: ALICE ITS2
  - short review of the detector
  - motivation to go further

- ALICE ITS3 (target: LHC LS3)
  - detector and project overview
  - sensor development in 65 nm
  - beam tests with bent MAPS

















### **ALICE** Detector and main goals





Study of QGP in heavy-ion collisions at LHC

- i.e. up to O(10k) particles to be tracked in a single event
- Reconstruction of charm and beauty hadrons
- Interest in low momentum (\$1 GeV/c) particle reconstruction









### **ALICE today** LS2 upgrades with Monolithic Active Pixel Sensors (MAPS)





#### **Inner Tracking System**

LS2

#### 6 layers:

2 hybrid silicon pixel

- 2 silicon drift
- 2 silicon strip

#### **Inner-most layer:**

radial distance: 39 mm material:  $X/X_0 = 1.14\%$ pitch:  $50 \times 425 \ \mu m^2$ rate capability: 1 kHz

7 layers: all MAPS

#### **Inner-most layer:**

radial distance: 23 mm material:  $X/X_0 = 0.3\%$ pitch:  $O(30 \times 30 \ \mu m^2)$ rate capability: 100 kHz (Pb-Pb)

#### **Muon Forward Tracker**

new detector

5 discs, double sided: based on same technology as ITS2















Good news: it was all built, assembled and tested!

# **ITS2** inner barrel



- ITS2 will already have unprecedented performance



#### **ITS2:** assembled three inner-most half-layers



• The Inner Barrel is ultra-light but rather packed  $\rightarrow$  further improvements seem possible

### Key questions: Can we get closer to the IP? Can we reduce the material further?







### Observations:

- Si makes only **1/7<sup>th</sup>** of total material
- irregularities due to support/ cooling









### Observations:

- Si makes only **1/7<sup>th</sup>** of total material
- irregularities due to support/ cooling
- Removal of water cooling
  - **possible** if power consumption stays below 20 mW/cm<sup>2</sup>







- Observations:
  - Si makes only **1/7<sup>th</sup>** of total material
  - irregularities due to support/ cooling
- Removal of water cooling
  - **possible** if power consumption stays below 20 mW/cm<sup>2</sup>







- Observations:
  - Si makes only **1/7<sup>th</sup>** of total material
  - irregularities due to support/ cooling
- Removal of water cooling
  - **possible** if power consumption stays below 20 mW/cm<sup>2</sup>
- Removal of the circuit board (power+data)
  - **possible** if integrated on chip







- Observations:
  - Si makes only **1/7<sup>th</sup>** of total material
  - irregularities due to support/ cooling
- Removal of water cooling
  - **possible** if power consumption stays below 20 mW/cm<sup>2</sup>
- Removal of the circuit board (power+data)
  - **possible** if integrated on chip







### Observations:

- Si makes only **1/7<sup>th</sup>** of total material
- irregularities due to support/ cooling
- Removal of water cooling
  - **possible** if power consumption stays below 20 mW/cm<sup>2</sup>
- Removal of the circuit board (power+data)
  - **possible** if integrated on chip
- Removal of mechanical support **benefit** from increased stiffness by rolling Si wafers









### Observations:

- Si makes only **1/7<sup>th</sup>** of total material
- irregularities due to support/ cooling
- Removal of water cooling
  - **possible** if power consumption stays below 20 mW/cm<sup>2</sup>
- Removal of the circuit board (power+data)
  - **possible** if integrated on chip
- Removal of mechanical support **benefit** from increased stiffness by rolling Si wafers













# **ITS3 detector concept**



| Beam pipe Inner/Outer Radius (mm)          |             | 16.0/16.5  |          |
|--------------------------------------------|-------------|------------|----------|
| IB Layer Parameters                        | Layer 0     | Layer 1    | Layer 2  |
| Radial position (mm)                       | 18.0        | 24.0       | 30.0     |
| Length (sensitive area) (mm)               | 300         |            |          |
| Pseudo-rapidity coverage                   | ±2.5        | ±2.3       | ±2.0     |
| Active area (cm <sup>2</sup> )             | 610         | 816        | 1016     |
| Pixel sensor dimensions (mm <sup>2</sup> ) | 280 x 56.5  | 280 x 75.5 | 280 x 94 |
| Number of sensors per layer                | 2           |            |          |
| Pixel size (µm²)                           | O (10 x 10) |            |          |
|                                            |             |            |          |



|  | Key | ingred | ients: |
|--|-----|--------|--------|
|--|-----|--------|--------|

- 300 mm wafer-scale chips, fabricated using stitching
- thinned down to 20-40 µm (0.02-0.04%) X0), making them flexible
- bent to the target radii
- mechanically held in place by carbon foam ribs
- Key benefits:
  - extremely low material budget: 0.02-0.04% X0
    - (beampipe: 500 µm Be: 0.14% X0)
  - homogeneous material distribution: negligible systematic error from material distribution

#### The whole detector will comprise six (!) chips – and barely anything else



















# **ITS3 performance figures**

#### pointing resolution



[ALICE-PUBLIC-2018-013]

improvement of factor 2 over all momenta



#### tracking efficiency



large improvement for low transverse momenta







### **ITS3 project startup** Eol, Lol, start of R&D



[LHCC minutes: <u>CERN-LHCC-2019-010 ; LHCC-139</u>]









### **ITS3 timeline** main milestones



**MLR:** multiple layer per reticle, **ER:** engineering run,

BM: breadboard module, EM: engineering module, QM: qualification module, FM: final module





# 65 nm



Magnus Mager (CERN) | MAPS R&D in 65 nm | LCWS2021 | 18.03.2021 | 13



### Sensor challenges and mapping to 65 nm

- Low power consumption (< 20 mW/cm<sup>2</sup>) inside pixel matrix to allow for air-cooling
- Stitching to obtain wafer-scale sensors
  - 300 mm wafer process to reach z-coverage
- Thinning to < 50 μm to become bendable</p>

while keeping other parameters (high) spatial resolution, moderate radiation hardness, ...) as for ITS2 (ALPIDE)







radiation hardness to be checked charge-collection to be checked/ optimised

#### Switching from 180 nm (ALPIDE) to 65 nm seems like a perfect fit!





# Wafer-scale chip

- Chip size is traditionally limited by CMOS manufacturing ("reticle size")
  - typical sizes of few cm<sup>2</sup>
  - modules are tiled with chips connected to a flexible printed circuit board









#### FPC + chips



# Wafer-scale chip

- Chip size is traditionally limited by CMOS manufacturing ("reticle size")
  - typical sizes of few cm<sup>2</sup>
  - modules are tiled with chips connected to a flexible printed circuit board
- New option: stitching, i.e. aligned exposures of a reticle to produce larger circuits
  - actively used in industry
  - a 300 mm wafer can house a chip to equip a full half-layer
  - requires dedicated chip design







#### Wafer-scale sensor



### **Sensor dimensions** 65 nm process

- All the three foreseen (half-) layers can be equipped with a single chip of a 300 mm wafer
- This is the driving argument for ITS3 to go to the 65 nm process
- At the same time, ITS3 wants to exploit the technology at its best, potentially:
  - lower power
  - more logic
  - smaller pixels
  - faster readout







### Architecture Ideas + Challenges

- Stitching requires a regular, periodic structure of the matrix
- Different architectures are under study
  - here, the concept laid out in the Lol is mostly inspired by ALPIDE
- ITS3 needs three different chip sizes
  - naturally comes with stitching a variable number of "rows"
  - likely adaptable to other geometries (e.g. square-like matrices)
- Electrical interface only on one side
- Power consumption needs to stay low in the matrix region, but can be larger at periphery
  - dictated by air cooling capabilities and acceptable voltage drop along the sensor





### Sensor prototyping First 65nm submission "MLR1"

- ITS3 plays a leading role in the evaluation of the TowerJazz 65 nm technology for MAPS
- First test structures in 65 nm have been just submitted
  - transistor test structures for radiation hardness studies
  - various diode matrices for charge-collection studies
  - analog building blocks
- Large number of dies in different processing flavours are expected
  - will provide crucial input into the next design steps
- Wafer-scale blocks will be diced out to study mechanical properties
- First chips expected mid 2021: stay tuned!





expect O(500) dies per wafer



# Bent MAPS







### Bending ALP DE example

tension wire

17700

#### 100 µm-thick Kapton

off the second s

#### 50 µm-thick ALPIDE

#### R = 18 mm jig



# Bending of wafer-scale chips first test with dummy silicon



#### Mylar foil

1.1

#### 50 µm-thick dummy silicon, full inner-layer size

#### R = 30 mm mandrell





### Mechanics demonstrator

- Layers can be held in shape and position with a minimal amount of material
- A very light carbon foam is already sufficient
- Detailed mechanical and thermal characterisation ongoing





### **Test beams** overview

- 3 beam tests at DESY in 2020
- different DUTs

a) Jun 2020

ec 2020

b) Aug/D

PIDE

comprehensive data set









### Example event





### ALPIDE bent to R = 18 mm

- beam crossing sensor twice
- shallow incident angles



# Example event closeup



# first crossing



### **Test beams 1st paper (draft)**



Fig. 10: Inefficiency as a function of threshold for different rows and incident angles with partially logarithmic scale ( $10^{-1}$  to  $10^{-5}$ ) to show fully efficient rows. Each data point corresponds to at least 8k tracks.





The chips just continue to work!



# Summary

- ALICE ITS2 is the first really large-scale (O(10 m<sup>2</sup>)) application of MAPS in HEP
  - the development of **ALPIDE** marks a **new generation** of MAPS in terms of functionality and performance figures
- ALICE ITS3 will push the technology even further, approaching the massless detector

  - R&D encouraged by LHCC in Sep 2019 and progressing at full steam - 65 nm prototype chips were submitted, expected back mid 2021 - feasibility of curved silicon detectors, marking the start of a new chapter on silicon-detector designs
  - fully integrated, wafer-scale sensors will allow large-scale minimal material budget applications





Thank you!





