

Novel reconstruction algorithms for an imaging calorimeter for HL-LHC

Erica Brondolin

on behalf of the CMS Collaboration

2021 International Workshop on Future Linear Colliders, 16th March 2021

LHC roadmap

- HL-LHC
 - A significant increase in the instantaneous luminosity (5 7.5x)
 - Great opportunity for sensitive SM tests and BSM searches
 - **Pileup**: up to ~200 collisions / bunch crossing (vs. Run-2 LHC about 40)
 - Radiation level: 1 year at HL-LHC ~ 10 years at LHC
 - → Installation of the Phase-2 upgrades of the CMS and ATLAS experiments

CMS HL-LHC upgrades

- Existing CMS designed for ~500 fb⁻¹
 - Radiation damage for many subsystems

Phase-2 upgrade is needed:

- Cope with the harsh conditions @ HL-LHC (increased PU, radiation levels, ...)
- Fully explore the HL-LHC potential
 - Very rich physics program ahead
 - Forward region particularly important

The CMS high granularity
calorimeter (HGCAL) will replace
the existing endcap
preshower, electromagnetic and
hadronic calorimeters

The case for high granularity

CMS currently follows the Particle Flow paradigm

Average jet composition: Detector w/ the best information:

60% charged particles → Tracker

30% photons \rightarrow ECAL

10% neutral hadrons → HCAL

• Main goal:

- Accurate reconstruction of each particle (within a jet as well isolated)
- Main ingredients:
 - Hardware
 Assignment of energy deposits to tracks:
 Granularity is important!
 - Software
 Sophisticated reco software to identify energy deposits from each individual particle

CMS High Granularity Calorimeter

 Imaging calorimeter with very fine lateral and longitudinal segmentation, and precision timing capabilities

• Covering $1.5 < \eta < 3.0$

Both endcaps	Silicon	Scintillators
Area	~620 m²	~400 m²
Channel size	0.5 - 1 cm ²	4 - 30 cm²
#Modules	~30'000	~4'000
#Channels	~6 M	240 k
Op. temp.	-30 °C	-30 °C

Ref.

CE-E: Electromagnetic Endcap Calorimeter
CE-H: Hadronic Endcap Calorimeter

CMS High Granularity Calorimeter

Scintillator tile + SiPM

front layers	Klayers
Silicon	
t)	

Per endcap	CE-E	CE-H (Si)	CE-H (Si+Scint)
Absorber	Pb & CuW & Cu	Stainless steel	
Depth size	25 X ₀ & 1.3 λ	8.5 λ	
Layers	28	8	14

Ref.

CE-E: Electromagnetic Endcap Calorimeter CE-H: Hadronic Endcap Calorimeter

Scintillator

CE-E

CMS High Granularity Calorimeter

Scintillator tile + SiPM

front layers	la vers
Silicon	
t)	

Per endcap	CE-E	CE-H (Si)	CE-H (Si+Scint)
Absorber	Pb & CuW & Cu	Stainless steel	
Depth size	25 X ₀ & 1.3 λ	8.5 λ	
Layers	28	8	14

Ref.

8" silicon sensor

CE-E: Electromagnetic Endcap Calorimeter CE-H: Hadronic Endcap Calorimeter

Scintillator

Shower reconstruction using TICL

Reconstruction in HGCAL

- Particle shower reconstruction in high-granularity calorimeter is very interesting and crucial task in high-density environments
 - Typical situation at HL-LHC → Many showers tend to overlap
 - Standard reconstruction algorithms using combinatorics are expected to fail due to memory/timing explosion
 - Fertile ground for new techniques and algorithms: clustering, machine learning, graph theory, and modern computer architectures
 - Planned and designed, taking into account the information from the tracking system and timing detectors
- Development can profit from experience with CMS Particle Flow techniques
- New flexible framework can be re-used in other (future) experiments using high-granularity calorimeters

What is TICL?

- TICL (**The Iterative Clustering**) is a modular framework integrated and under development in CMS software (CMSSW)
- Main purpose: processing calo 5D rechits (x, y, z, t, E) and returning particle properties and probabilities
- In a nutshell: grouping 2D Layer Clusters into 3D clusters (Tracksters) iteratively to reconstruct different particle species

TICL modules/components

Flexible, efficient, versatile

- Algorithms are designed as swappable plugins, with heterogeneous architectures / portability in mind
- Skip and/or change modules easily

- Explore new algorithms or techniques (e.g. Machine Learning) with plug-in on top
- Mostly geometry independent

2D Clusters with CLUE

- CLUE (CLUstering by Energy) is an algorithm inspired by "Clustering by fast search and find of density peaks" (Ref.)
- Main characteristic:
 - Energy density rather than individual cell energy used to define ranking, seeding threshold, etc...
- GPU-friendly, i.e. suitable for the upcoming era of heterogeneous computing in HEP

- Querying neighborhood is a frequent operation in density-based clustering → fast!
- Build Fixed-Grid Spatial Index for hits on each layer (η, φ space)
 - Grid tiles are small compared to the size of HGCAL layer
 - Each tile in the grid hosts indices of hits inside it and has a fixed length of memory to store the hosted indices
- To find the neighborhood hits $N_d(i)$ of *i*-hit, we only need to loop over hits in $\Omega_d(i)$

d-searchBox:

$$\Omega_d$$
 (i) = {j : j \in tiles touched by square window(x_i ± d, y_i ± d)}

d-neightborhood:

$$N_{d}(i) = \{j : d_{ij} < d\} \subset \Omega_{d}(i)$$

 ho_c , d_c , δ_c , δ_0 are <u>tunable</u> <u>parameters</u> chosen with purity vs fake studies

- Calculate local energy density (ρ) in a distance (d_c)
 - Each hit j weighted by the deposited energy (E_i)

convolution kernel

- For each hit, calculate ρ_i
- Individual d_c values considered in HGCAL Silicon and Scintillator sections

$$\rho_{i} = \sum_{j \in \mathcal{N}_{d}(i)} E_{j} \times f(d_{ij}); \ f(d_{ij}) = \begin{cases} 1, \text{if } i = j \\ k, \text{if } 0 < d_{ij} \leq d_{C} \\ 0, \text{if } d_{ij} > d_{C} \end{cases}$$

 ho_c , d_c , δ_c , δ_0 are <u>tunable</u> <u>parameters</u> chosen with purity vs fake studies

- Calculate "Nearest-Higher" hit within N_{dm}(i)
 - O Define $d_m = max(δ_0, δ_0)$, $δ_0$ and $δ_0$ parameters for outlier demotion and seed promotion
 - Find the closest hit with higher local energy density, nh;

$$nh_i = \begin{cases} argmin_{j \in \hat{\mathcal{N}}_{d_m}(i)} d_{ij}, \text{ if } |\hat{\mathcal{N}}_{d_m}| \neq 0, \hat{\mathcal{N}}_{d_m}(i) = \{j : j \in \mathcal{N}_{d_m}(i), \rho_j > \rho_i\} \\ -1, \text{ otherwise} \end{cases}$$

 \circ Calculate the separation distance $\delta_i = \text{dist}(i, nh_i)$

 ho_c , d_c , δ_c , δ_0 are <u>tunable</u> <u>parameters</u> chosen with purity vs fake studies

- Promote as **seed** if $\rho_i > \rho_c$, $\delta_i > \delta_c$
- Demote as outlier if $\rho_i < \rho_c$, $\delta_i > \delta_o$
- Assign unique, progressive clusterID to each cluster
 - Followers are defined and associated to their closest seed
- → Rock solid against noise
- → Clustering almost all energy
- → Tested successfully also on test beam data

A TICL iteration

- <u>Input:</u> Layer Clusters built by CLUE

 Typical PU event: O(10⁴) Layers Clusters/event out of O(10⁵) RecHits
- Pattern Recognition is restricted to available Layer
 Clusters inside a Seeding Region
 - Track- or Global seeded
 - Currently using Cellular Automaton
- Linking, Cleaning and Classification to assign ID with a given probability may exploit Machine Learning
- Layer Clusters belonging to already identified physics objects are masked-out to reduce combinatorics
- Use timing information, where available

TICL Pattern Recognition

Algorithm: Cellular Automaton

1. Doublet creation:

- For each 2D layer cluster in a Layer_N, open a search window in Layer_{N+1}
 - Search uses a 2D histogram in (η, φ)
 - Bin size is 0.05 (i.e. ~ 70 mm at η = 1.6 and 20 mm at η = 2.8)
 - Search window is (3×3) [(5×5)] in the region $\eta < 2.1$ [$\eta \ge 2.1$] bins centred on the bin in which the layer cluster sits
- A layer cluster in this search window will make a doublet with the original layer cluster
 - Timing information is used to select compatible LCs

TICL Pattern Recognition

Algorithm: Cellular Automaton

- 1. Doublet creation
- 2. Doublets linking
 - If passing requirements on:
 - Direction of each doublet wrt the vertex (or wrt a track direction if this is a track seeded iteration)
 - Angle between the doublets
- 3. Tracksters creation
 - Collect the whole structure as a single trackster
 - Additional requirements on:
 - #(missing layers), timing info, etc.

TICL iterative scheme

- The following iterations have been implemented:
 - track-seeded (e.g. electrons, charged hadrons)
 - electromagnetic (e.g. electrons, photons)
 - hadronic (e.g. neutral hadrons)
 - MIP-like (e.g. muons)
 - This will require some modification to the CLUE algorithm in order to have high efficiency also for single cell (anti)-clusters.
 - Work on-going

Example of two close-by reconstructed tracksters

Electromagnetic showers

- TICL has been tested on electromagnetic showers
- Collaboration with CMS objects groups for a full blown electron reconstruction with bremsstrahlung recovery
- Preliminary results are very encouraging

Rec/able: Sum of energy of all RecHits produced by the generated particle

CLUE: Sum of the energy in the 2D clusters returned by the CLUE algorithm

TICL: sum of the energy in the shower reconstructed using TICL

	Stochastic	Constant
Rec/able	23%	0.9%
TICL	25%	0.9%

Hadronic showers

- Hadronic showers vary in shape, and often resemble a branching tree of sub-structures
- Current approach: reconstruct the whole shower as a single trackster
- Preliminary results are very promising

Rec/able: Sum of energy of all RecHits produced by the generated particle

CLUE: Sum of the energy in the 2D clusters returned by the CLUE algorithm

TICL: sum of the energy in the shower reconstructed using TICL

TICL (non-interacting): sum of the energy in the shower reconstructed using TICL produced by pions that did not interacted in the tracker volume in front of HGCAL

	Stochastic	Constant
Rec/able	72%	5.5%
TICL	80%	8.7%
TICL (non int)	72%	8.0%

LCWS2021

Latest developments

- Main recent changes on following topics:
 - Ordering of iterations:
 - Optimise order of the iterations
 - New iteration targeting electromagnetic showers seeded from a reconstructed track
 - Updates in Trackster reconstruction:
 - Reduce the impact of the high pile-up environment
 - Particle-Flow interpretation:
 - Each single trackster evaluated as a PF candidate according to the TICL iteration
- Short-term goals achieved
 - Enhance performance on single particles
 - ✓ Make it more robust against PU
 - in particular EM reconstruction

Outlook & Conclusions

Conclusions

- The reconstruction in High Granularity Calorimeters at future colliders (HL-LHC and beyond) has many unprecedented challenges
 - A "tracking" device with high hit multiplicity and precise time information
- A novel reconstruction algorithm for imaging calorimeters has been developed in CMS
 - Follows a modular/factorized approach necessary to exploit the full potential of such detectors and understand the results
 - Fertile ground for the exploitation of neural networks and other novel algorithms
 - Was developed with parallelism in mind (CLUE in backup)
- First results are extremely encouraging (single particle with PU=0)
- Next steps:
 - Systematic studies on thresholds/cuts per-iteration
 - Improve implementation of PF-objects interpretation
 - Look into possibility of locally purify our tracksters from PU contribution
- Making it a common library would benefit experiments at future colliders and contribute to TICL's improvement by using it with different topologies/geometries

Backup

Heterogeneous Reconstruction

- The complexity of the detector and the extrapolated computing needs of CMS pose challenges from the computation point of view
- Heterogeneous approaches are actively being explored and implemented
- 2D clustering has been fully ported and validated on GPUs (Ref.)

CMSSW
CLUE on CPU
CLUE on GPU

One order of magnitude in speed-up achieved with identical results

&

Similar speed-up in the CPU version

28

TICL-PF interpretation

- Very first draft
- All tracksters reconstructed in EM iter labelled as photons
- All tracksters reconstructed in HAD iter labelled as kaons long
- Tracksters from the TrkEM iter :
 - Check if there is another trackster coming from TrkHAD iter that is seeded by the very same track. If so, merge tracksters and the result injected as a charged hadron
 - Search the one most compatible (in η-Φ and p_T space) with the seeding track →
 labelled as electron
 - Remaining additional trackster are promoted as **photons**
- Trackster from the TrkHAD iter are promoted as charged hadrons
- All general tracks (high purity, p_T > 1) which have not been used are promoted as charged hadrons