

Contribution ID: 16

Type: not specified

Probing light quark Yukawa couplings through angularity distributions in Higgs boson decay

Thursday 18 March 2021 06:20 (20 minutes)

We propose to utilize angularity distributions in Higgs boson decay to probe light quark Yukawa couplings at e^+e^- colliders. Angularities τ_a are a class of 2-jet event shapes with variable and tunable sensitivity to the distribution of radiation in hadronic jets in the final state. Using soft-collinear effective theory (SCET), we present a prediction of angularity distributions from Higgs decaying to quark and gluon states at e^+e^- colliders to NNLL + $\mathcal{O}(\alpha_s)$ accuracy. Due to the different color structures in quark and gluon jets, the angularity distributions from $H \rightarrow q\bar{q}$ and $H \rightarrow gg$ show different behaviors and can be used to constrain the light quark Yukawa couplings.

We show that the upper limit of light quark Yukawa couplings could be probed up to $15 \sim 22\%$ level of the bottom quark Yukawa coupling in the Standard Model.

Time Zone

Americas

Primary author: Dr YAN, Bin (Los Alamos National Laboratory)

Co-author: Dr LEE, Christopher (LANL)

Presenter: Dr YAN, Bin (Los Alamos National Laboratory)

Session Classification: PD1: Theoretical Developments

Track Classification: Physics and Detectors Tracks: PD1: Theoretical Developments