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For a while, people have been able to carry out complex computations

without necessarily having to understand any technical details

Such is the power of automation

While automated codes have been employed predominantly in hadronic

collisions, they can work for e+e− too



For a while, people have been able to carry out complex computations

without necessarily having to understand any technical details

Such is the power of automation

While automated codes have been employed predominantly in hadronic

collisions, they can work for e+e− too

Take MadGraph5 aMC@NLO, widely used by both theorists
and experimentalists. From 1405.0301: −→



.
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So are we done?

Not quite. In those results:

◮ No beamstrahlung

◮ NLO was in αS, not α

◮ No description of all-order electron-mass factorisable effects

(i.e. collider energy ≡ collision energy)



Consider the production of a system X at an e+e− collider:

e+(Pe+) + e−(Pe−) −→ X

Its cross section is written as follows:

dΣe+e−(Pe+ , Pe−) =
∑

kl

∫

dy+dy− Bkl(y+, y−) dσkl(y+Pe+ , y
−
Pe−)

To be definite, let’s stipulate that:

k ∈ {e+, γ} , l ∈ {e−, γ}

which is immediate to generalise, if need be. Then:

� dΣe+e− : the collider-level cross section

� dσkl: the particle-level cross section

� Bkl(y+, y−): describes beam dynamics (mainly beamstrahlung)

� e+ , e− on the lhs: the beams

� e+ , e− , γ on the rhs: the particles



The particle-level cross section embeds all that is not beam dynamics

The NLO bit has been addressed in 1804.10017: full automation of NLO

computations in α (as well as for any combination αk
S
αp). This solves once

and for all the problem at the level of short-distance cross sections

As for electron-mass factorisable effects, use a factorisation approach
(I’ll concentrate here on ISR. Analogous formulae hold for FSR)



Factorisation

=

σ = PDF⋆PDF⋆σ̂

PDFs collect (universal) small-angle dynamics



dσkl(pk, pl) =
∑

ij=e+,e−,γ

∫

dz+dz− Γi/k(z+, µ
2,m2) Γj/l(z−, µ

2,m2)

× dσ̂ij(z+pk, z−pl, µ
2) + O

((

m2

s

)p)

where one calculates Γ and dσ̂ to predict dσ

� k , l = e+ , e− , γ on the lhs: the particles that emerge from beamstrahlung

� i , j = e+ , e− , γ on the rhs: the partons

� dσkl: the particle-level (ie observable) cross section

� dσ̂ij : the subtracted parton-level cross section.

Generally with m = 0 =⇒ power-suppressed terms in dσ discarded

� Γi/k: the PDF of parton i inside particle k

� µ: the hard scale, m2 ≪ µ2 ∼ s



Very similar to QCD, with some notable differences:

� PDFs and power-suppressed terms can be computed perturbatively

� An object (e.g. e−) may play the role of both particle and parton

As in QCD, a particle is a physical object, a parton is not



As I have said, parton-level cross section computations are highly

automated, and can be carried out at the NLO in both α and αS

with MadGraph5 aMC@NLO

Conversely, until recently PDFs were only available at the LO+LL,
which is insufficient in the context of NLO simulations

=⇒



z-space LO+LL PDFs (α log(E/m))k:
∼ 1992

◮ 0 ≤ k ≤ ∞ for z ≃ 1 (Gribov, Lipatov)

◮ 0 ≤ k ≤ 3 for z < 1 (Skrzypek, Jadach; Cacciari, Deandrea, Montagna, Nicrosini; Skrzypek)

◮ matching between these two regimes



z-space LO+LL PDFs (α log(E/m))k:
∼ 1992

◮ 0 ≤ k ≤ ∞ for z ≃ 1 (Gribov, Lipatov)

◮ 0 ≤ k ≤ 3 for z < 1 (Skrzypek, Jadach; Cacciari, Deandrea, Montagna, Nicrosini; Skrzypek)
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z-space NLO+NLL PDFs (α log(E/m))k + α (α log(E/m))k−1:
∼ 1909.03886, 1911.12040

◮ 0 ≤ k ≤ ∞ for z ≃ 1

◮ 0 ≤ k ≤ 3 for z < 1 ⇐⇒ O(α3)

◮ matching between these two regimes

◮ for e+, e−, and γ

◮ both numerical and analytical

Main tool: the solution of PDFs evolution equations



Henceforth, I consider the dominant production mechanism at an e+e−

collider, namely that associated with partons inside an electron⋆

Simplified notation:

Γi(z, µ
2) ≡ Γi/e−(z, µ2)

⋆The case of the positron is identical, at least in QED, and will be understood



NLO initial conditions (1909.03886)

Conventions for the perturbative coefficients:

Γi = Γ
[0]
i +

α

2π
Γ

[1]
i + O(α2)

Results:

Γ
[0]
i (z, µ2

0) = δie−δ(1 − z)

Γ
[1]
e−

(z, µ2
0) =

[

1 + z2

1 − z

(

log
µ2

0

m2
− 2 log(1 − z) − 1

)]

+

+Kee(z)

Γ[1]
γ (z, µ2

0) =
1 + (1 − z)2

z

(

log
µ2

0

m2
− 2 log z − 1

)

+Kγe(z)

Γ
[1]
e+ (z, µ2

0) = 0

Note:

◮ Meaningful only if µ0 ∼ m

◮ In MS, Kij(z) = 0; in general, these functions define an IR scheme



NLL evolution (1911.12040)

General idea: solve the evolution equations starting from the initial
conditions computed previously

∂Γi(z, µ
2)

∂ logµ2
=
α(µ)

2π
[Pij ⊗ Γj ] (z, µ

2) ⇐⇒
∂Γ(z, µ2)

∂ logµ2
=
α(µ)

2π

[

P ⊗ Γ
]

(z, µ2) ,

Done conveniently in terms of non-singlet, singlet, and photon

Two ways:

� Mellin space: suited to both numerical solution and all-order, large-z

analytical solution (called asymptotic solution)

� Directly in z space in an integrated form: suited to fixed-order, all-z

analytical solution (called recursive solution)



Asymptotic solution

Non-singlet ≡ singlet; photon is more complicated

ΓNLL(z, µ2) =
e−γEξ1eξ̂1

Γ(1 + ξ1)
ξ1(1 − z)−1+ξ1

×

{

1 +
α(µ0)

π

[

(

log
µ2

0

m2
− 1

)(

A(ξ1) +
3

4

)

− 2B(ξ1) +
7

4

+

(

log
µ2

0

m2
− 1 − 2A(ξ1)

)

log(1 − z) − log2(1 − z)

]}

where:

A(κ) = −γE − ψ0(κ)

B(κ) =
1

2
γ2

E
+
π2

12
+ γE ψ0(κ) +

1

2
ψ0(κ)

2 −
1

2
ψ1(κ)

with:



ξ1 = 2t−
α(µ)

4π2b0

(

1 − e−2πb0t
)

(

20

9
nF +

4πb1
b0

)

= 2t+ O(αt) = η0 + . . .

ξ̂1 =
3

2
t+

α(µ)

4π2b0

(

1 − e−2πb0t
)

(

λ1 −
3πb1
b0

)

=
3

2
t+ O(αt) = λ0η0 + . . .

λ1 =
3

8
−
π2

2
+ 6ζ3 −

nF

18
(3 + 4π2)

and:

t =
1

2πb0
log

α(µ)

α(µ0)

=
α(µ)

2π
L−

α2(µ)

4π

(

b0L
2 −

2b1
b0
L

)

+ O(α3) , L = log
µ2

µ2
0

.



Recursive solution

Too involved to be reported here. For the record, the (previously unknown)
recursive NLL equations are:

J LL

k = P
[0] ⊗J LL

k−1

J NLL

k = (−)k(2πb0)
kF [1](µ2

0)

+
k−1
∑

p=0

(−)p(2πb0)
p

(

P
[0] ⊗J NLL

k−1−p + P
[1] ⊗J LL

k−1−p

−
2πb1
b0

P
[0] ⊗J LL

k−1−p

)

Integrated PDFs expanded on the basis of the J LL and J NLL functions
with known coefficients

We have computed these for k ≤ 3 (J LL) and k ≤ 2 (J NLL), ie to O(α3)

Results in 1911.12040 and its ancillary files



A remarkable fact

Our asymptotic solutions, expanded in α, feature all of the terms:

logq(1 − z)

1 − z
singlet, non − singlet

logq(1 − z) photon

of our recursive solutions. This ensures a smooth matching

Non-trivial; stems from keeping subleading terms (at z → 1) in the AP kernels



Sample results

NLL vs LL, non-singlet. The insets show the double ratio,
ie numerical vs analytical

This does not mean NLO and LO cross sections will differ by a large factor:

PDFs are unphysical



Take-home message

We can easily exploit the enormous amount of work on automated

computations of the past decade to port tools which are part of the

LHC lore to e+e− collider simulations

The easiest way to do so is to exploit the similarities of

collinear-factorisation formulae in QCD and QED

The popularity of MadGraph5 aMC@NLO at the LHC with both
theorists and experimentalists stems from:

� Its flexibility

� The possibility for the user to extend its physics scope (by providing Lagrangians)



MadGraph5 aMC@NLO has been able to perform short-distance

NLO EW computations since 2018

At that time, there were thus two missing ingredients for fully-fledged

e+e− simulations:

� QED PDFs of matching accuracy (NLO+NLL)

−→ Solved in 1909.03886 and 1911.12040; ongoing work on alternative IR schemes

� Implementation of beamstrahlung and QED collinear factorisation

−→ Completed, and being stress-tested

We plan to release the first public version this spring


