Alignment of the ATLAS Inner Detector in Run 2

- LCWS 2021
- March 17, 2021
- Jesús Guerrero Rojas On behalf ATLAS Collaboration

Introduction

- The Inner Detector (ID) is the main tracking system of lacksquareATLAS. The ID is composed:
 - TRT : straw tubes
 - SCT : silicon strip detector
 - Pixels & IBL : silicon pixel detector
- The knowledge of the geometry of the ID determines the accuracy of the track reconstruction
- The actual geometry of the ID could differ from the nominal due to:
 - The assembly of the detector itself
 - The operation of the ATLAS detector
- The alignment process determines the actual geometry of the ID and also its possibles changes in time

Alignment process

- The alignment of the ID is a track based alignment
- Track fit residuals (r) are defined as the distance between measured hits and extrapolated tracks :
 - The alignment consist of a minimization of a χ^2 function of the residuals
 - Non-zero residuals indicate displacements of the detector from the nominal 2. geometry

Alignment parameter : 3 Rotation + 3 Translation

$$a = (T_x, T_y, T_z, R_x, R_y, R_z) \times N_{struct}$$

Track parameter:

$$t = (d_0, z_0, \phi_0, \theta, q/p)$$

J. Guerrero Rojas | Alignment of the ATLAS Inner Detector in Run 2 | LCWS2021 | March 17, 2021

$$\chi^2 = \sum_{t} \left[r^T(t, a) V^{-1} r(t, a) \right]$$

$$V = \begin{pmatrix} \sigma_{hit}^2 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \sigma_{hit}^2 \end{pmatrix}$$

$$= 0 \rightarrow \sum \left[\left(\frac{dr}{da} \right)^T V^{-1} \left(\frac{dr}{da} \right) \right] \underbrace{\delta a}_{V} + \sum \left(\frac{dr}{da} \right)^T V^{-1} = 0$$
Alignment corrections

uu

Alignment process

- The alignment process is performed at different levels following the assembly structure of the ID

Level	Description	Structures
1	IBL, Pixel, SCT endcaps, TRT barrel and 2 endcaps	7
Si2	Pixel endcap disks and barrel layers, IBL layers, SCT endcaps disk and barrel layers	32
Si3	Pixel modules,IBL modules, SCT modules	6112
TRT2	TRT barrel modules and endcaps wheels	176
TRT3	TRT straws	351k

The χ^2 function could be extended to add constraints on both the tracks parameters and the alignment parameters ullet

$$\chi^{2} = \sum \left[r^{T}(t, a) V^{-1} r(t, a) + R \right]$$

J. Guerrero Rojas | Alignment of the ATLAS Inner Detector in Run 2 | LCWS2021 | March 17, 2021

The alignment corrections are obtained through an iterative process, increasing the complexity level sequentially

 $\left[P^{T}(t) V_{t}^{-1} R(t) \right] + R^{'T}(a) V_{a}^{-1} R'(a)$

Track constraint

Alignment constraint

Time dependent alignment

- An automated time-dependent alignment is performed within the ATLAS prompt calibration loop
- The time-dependent alignment is performed for every new LHC fill prior to data reconstruction
- The obtained corrections are automatically uploaded and the result are monitored

J. Guerrero Rojas | Alignment of the ATLAS Inner Detector in Run 2 | LCWS2021 | March 17, 2021

An example of a movement within a run is the vertical position of the Pixel detector VS time shown in the left figure

Weak Modes

- A Weak Mode is a geometrical deformation in a such way that:
 - It leaves the χ^2 function of the track fit invariant •
 - It can bias the reconstructed track parameters ullet
- The bias produced by a weak mode can be mitigated adding parameters constraints in the χ^2 function \bullet \star reconstructed hit position $-- \triangleright$ real trajectory \star real hit position — detector layers

J. Guerrero Rojas | Alignment of the ATLAS Inner Detector in Run 2 | LCWS2021 | March 17, 2021

The track based alignment process is not sensitive to some kinds of geometrical distortion known as weak modes

- Length scale bias is a charge-symmetric alteration of the measured track curvature
- \bullet field B (ϵ_{s}).

Radial expansion

$$p'_T = p_T(1 + \epsilon_r)$$
 $p'_T = p_T$ $p' = p(1 + \epsilon_s)$

$$p'_z = p_z \qquad \qquad p'_z = p_z$$

- The reconstructed mass of the decay of a particle into $\mu^+\mu^-$ in the barrel is used to measure the bias
- In the limit where the muon mass is ignored \bullet

$$m_{\mu\mu}^{\prime 2} \approx m_{\mu\mu}^2 + 2m_{\mu\mu}^2 (\epsilon_s + \epsilon_{r'} \sin^2 \alpha)$$

$$\sin^2 \alpha = E^+ E^- \left[\beta_T^+ - \beta_T^-\right] / m_{\mu\mu}^2 \qquad \epsilon_s = \epsilon_z \qquad \epsilon_{r'}$$

A radial distortion and a scale bias can be distinguished by measuring the reconstructed mass as a function of $sin^2\alpha$

J. Guerrero Rojas | Alignment of the ATLAS Inner Detector in Run 2 | LCWS2021 | March 17, 2021

The bias could be produced by a radial expansion (ϵ_r) or a longitudinal expansion (ϵ_r) of the ID, or a bias on the magnetic

Longitudinal expansion Magnetic field bias

 $p_{z}(1+\epsilon_{z})$

The length scale bias has been measured using J/ψ and Z decays into $\mu^+\mu^-$ in the barrel of the ID \bullet

- The results show a momentum scale bias ($\epsilon_s \sim 0.9 \times 10^{-3}$) but not a significant radial scale ($\epsilon_{r'}$) ullet
- The value of the scale bias is consistent for both samples \bullet

Weak Modes: Sagitta bias

$$p' = p(1 +$$

- There are two methods to evaluate the $\delta_{sagitta}$:
 - muon in the samples with:

$$\delta_{sagitta,i}(\eta,\phi) = -q \frac{m_{\mu\mu}^2 - m_Z^2 \, 1}{2m_Z^2}$$

E/p method: assuming that the average transverse energy of positron and electron are equal, $\delta_{sagitta}$ can be estimated

$$\delta_{sagitta}(\eta, \phi) = \frac{\langle E/p' \rangle^{+} - \langle E/p' \rangle^{-}}{2 \langle E_T \rangle}$$

Where
$$E_T = E / cosh \eta$$

J. Guerrero Rojas | Alignment of the ATLAS Inner Detector in Run 2 | LCWS2021 | March 17, 2021

A sagitta bias ($\delta_{sagitta}$) is caused by a distortion in the bending plane of the tracks and it is a charge-antisymmetric alteration

 $-q p_T \delta_{sagitta})^{-1}$

- $Z \rightarrow \mu^+ \mu^-$ method: it is an iterative process to determine $\delta_{sagitta}$. For the i-th iteration, $\delta_{sagitta}$ is computed for every

Weak Modes: Sagitta bias

$$Z \rightarrow \mu^+ \mu^- m e$$

$$p' = p(1 + q \ p_T \ \delta_{sagitta})^{-1}$$

For example if :

$$\delta_{sagitta} = 0.1 \ TeV^{-1}$$

$$p_T = 50 \ GeV$$

$$\int p' - p = 0.25 \ GeV (0.5\%)$$

10

Impact parameter bias

- The fact that both muons from ullet $Z \rightarrow \mu^+ \mu^-$ come from the same vertex can be exploited to measure the bias on d0 and z0
- The differences between the values of d_0 ulletand z_0 of each pair of muons from $Z \rightarrow \mu^+ \mu^-$ give a measurement of the bias

J. Guerrero Rojas | Alignment of the ATLAS Inner Detector in Run 2 | LCWS2021 | March 17, 2021

11

Stability of the alignment process

- The stability is estimated for each layer and module z-position by integrating over all the ϕ \bullet
- The standard deviations of the residuals in x and y position across the fills give a measurement of the stability lacksquare

Conclusion

- A brief introduction to the ATLAS ID track based alignment method has been presented
 - The techniques to measure and minimize track parameter biases has been described
 - The adopted alignment strategy has proven to describe and correct time dependent misalignments within a run
- The effect of several Weak Modes have been studied: Impact parameters, sagitta and length scale biases
 - Results show no hint of a radial expansion of the ID but a global scale bias $\,\sim 0.9 imes 10^{-3}$
 - The sagitta bias is reduced to less than $\sim 0.1 \ TeV^{-1}$ after the full Run 2 Alignment
- Impact parameters biases are reduced at the level of μm
- The description of the detector geometry is measured to be stable at the level of μm for most part of the detector

Backup

- Length scale bias is a charge-symmetric alteration of the measured track curvatures \bullet
- If the actual radius of a detector module, R, is assumed to be $R(1 + \epsilon_r)$, then for small distortions ($|\epsilon_r| \ll 1$), the \bullet reconstructed momentum will be

Similarly, if the actual longitudinal dimension of a detector module, z, is assumed to be $z(1 + \epsilon_z)$, the reconstructed \bullet momentum will be:

 \bullet $B(1 + \epsilon_s)$ the particle momentum will be:

J. Guerrero Rojas | Alignment of the ATLAS Inner Detector in Run 2 | LCWS2021 | March 17, 2021

$$p_T' = p_T(1 + \epsilon_r)$$

 $p'_z = p_z$

$$p_T' = p_T$$

$$p'_z = p_z(1 + \epsilon_z)$$

There is a degeneracy between the effects of a bias in the magnetic field and a global scaling of the detector (radial and longitudinal: ϵ_s), as both lead to a momentum bias of the form $p(1 + \epsilon_s)$. Then, if the magnetic field B is assumed to be

$$p' = p(1 + \epsilon_s)$$

 \bullet particle decaying to two muons $(m'_{\mu\mu})$ and the true mass $(m'_{\mu\mu})$ is:

$$m'_{\mu\mu} \approx m^2_{\mu\mu} + 2E^+ E^- [\beta_T^+ - \beta_T^-]^2 \epsilon_r + 2E^+ E^- [\beta_T^+ - \beta_T^-]^2 \epsilon_z$$

Where $\beta = E/p$ and this approximation is valid to firs order in ϵ

In the limit where the muon mass is ignored lead to \bullet

$$m_{\mu\mu}^{'2} \approx m_{\mu\mu}^2 + 2m_{\mu\mu}^2 (\epsilon_s + \epsilon_{r'} \sin^2 \alpha)$$

where

$$sin^2 \alpha = E^+ E^- \left[\beta_T^+ - \beta_T^-\right] / m_{\mu\mu}^2 \qquad \epsilon_s = \epsilon_z \qquad \epsilon_{r'} = \epsilon_r - \epsilon_z$$

 \bullet

J. Guerrero Rojas | Alignment of the ATLAS Inner Detector in Run 2 | LCWS2021 | March 17, 2021

In case of a global radial and longitudinal bias are presented, the relation between the reconstructed invariant mass of a

Measuring the reconstructed mass as a function of $sin^2\alpha$ is possible differentiate the radial distortion from a scale bias

Weak Modes: Sagitta bias

- The sagitta bias is parametrized as

$$p' = p(1 + q \ p_T \ \delta_{sagitta})^{-1}$$

where q is the charge of the particle and $\delta_{sagitta}$ the value of the distortion

- The $Z \rightarrow \mu^+ \mu^-$ decays are used to determine the value of the $\delta_{sagitta}$
- An iterative process is used to determine $\delta_{sagitta}$. For the i-th iteration, • $\delta_{sagitta}$ computed for every muon in the $Z \rightarrow \mu^+ \mu^-$ samples with:

$$\delta_{sagitta,i}(\eta,\phi) = -q \frac{m_{\mu\mu}^2 - m_Z^2}{2m_Z^2} \frac{1 + qp_T' \delta_{sagitta,i-1}(\eta,\phi)}{p_T'} + \frac{1}{2m_Z'} \frac{1 + qp_T' \delta_{sagitta,i-1}(\eta,\phi)}{p_T'} + \frac{1}{2$$

A sagitta bias is caused by a displacement in the bending plane of the tracks, and a charge-antisymmetric alteration

+ $\delta_{sagitta,i-1}(\eta,\phi)$

Weak Modes: Impact parameter bias

- The weak mode can also lead to a bias in the transverse (d_0) and longitudinal (z_0) impact parameter ullet
- This bias can be extracted from the difference values of d_0 and z_0 of each pair of muons ullet
- This measure for Dijet samples are: ullet

The small bias in z_0 is not introduced by the track based alignment \bullet

Impact parameter bias

The transverse (d_0) and longitudinal (z_0) impact parameter bias as a function of the Run 2 delivered luminosity ullet

- The bias in Data collected 2016 was introduced by a change in the underlying geometry of the ATLAS ID \bullet
- Overall d_0 biases of less than $1\mu m$ for Data collected in 2017 and 2018 ${\color{black}\bullet}$
- The z_0 bias is negligible and constant across the year (below 0.5 μm) •
- J. Guerrero Rojas | Alignment of the ATLAS Inner Detector in Run 2 | LCWS2021 | March 17, 2021

Stability of the alignment process

- The stability is estimated for each layer and module z-position by integrating over all the ϕ \bullet
- The standard deviations of the residuals in x and y position across the fills give a measurement of the stability ullet

