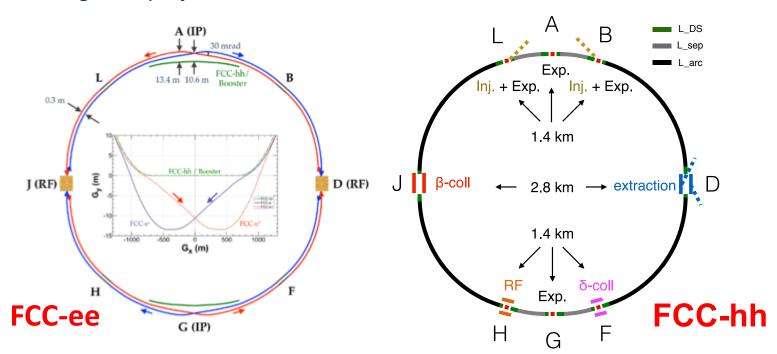
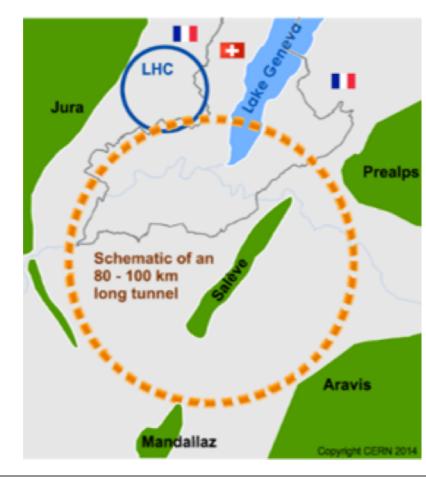


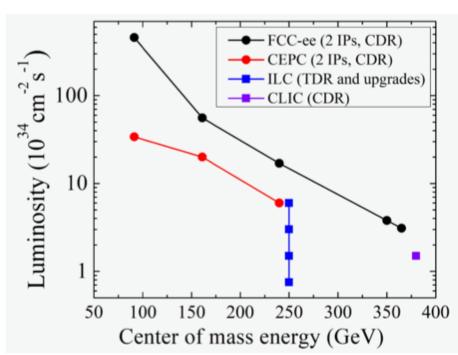
FCC-ee Luminosity Monitor

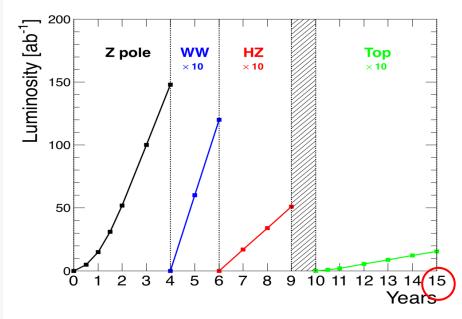


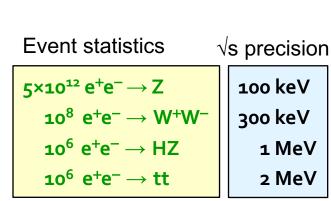


The FCC integrated program inspired by successful LEP – LHC programs

Comprehensive cost-effective program maximizing physics opportunities


- Stage 1: FCC-ee (Z, W, H, tt) as Higgs factory, electroweak & and top factory at highest luminosities
- Stage 2: FCC-hh (~100 TeV) as natural continuation at energy frontier, with ion and eh options
- Complementary physics
- Common civil engineering and technical infrastructures
- Building on and reusing CERN's existing infrastructure
- FCC integrated project allows seamless continuation of HEP after HL-LHC





FCC-ee Luminosity, Operation Model and Statistics

Largest luminosities in the 88 – 365 GeV energy range

Working point	Z, years 1-2	Z, later	ww	HZ	tt threshold	and above
√s (GeV)	88, 91, 94		157, 163	240	340 – 350	365
Lumi/IP (10 ³⁴ cm ⁻² s ⁻¹)	100	200	25	7	0.8	1.4
Lumi/year (2 IP)	24 ab ⁻¹	48 ab ⁻¹	6 ab-1	1.7 ab ⁻¹	0.2 ab ⁻¹	0.34 ab ⁻¹
Physics goal	150 ab ⁻¹		10 ab ⁻¹	5 ab ⁻¹	0.2 ab ⁻¹	1.5 ab ⁻¹
Run time (year)	2	2	2	3	1	4

FCC-ee Physics Landscape

"Higgs Factory" Programme

- At two energies, 240 and 365 GeV, collect in total
 - 1.2M HZ events and 75k WW → H events
- Higgs couplings to fermions and bosons
- Higgs self-coupling (2-4 σ) via loop diagrams
- Unique possibility: measure electron coupling in s-channel production e⁺e⁻ → H @ √s = 125 GeV

Ultra Precise EW Programme

Measurement of EW parameters with factor ~300 improvement in *statistical* precision wrt current WA

- 5x10¹² Z and 10⁸ WW
 - m_Z , Γ_Z , Γ_{inv} , $\sin^2\theta_W^{eff}$, R_ℓ^Z , R_b , α_s , m_W , Γ_W ,...
- 10⁶ tt

D (RF)

• m_{top} , Γ_{top} , EW couplings

Indirect sensitivity to new phys. up to Λ =70 TeV scale

Heavy Flavour Programme

- Enormous statistics: 10¹² bb, cc; 1.7x10¹¹ ττ
- Extremely clean environment, favourable kinematic conditions (boost) from Z decays
- CKM matrix, CP measurements, "flavour anomaly" studies, e.g. b → sττ, rare decays, cLFV searches, lepton universality, PNMS matrix unitarity

Feebly Coupled Particles - LLPs

Intensity frontier: Opportunity to directly observe new feebly interacting particles with masses below m_7 :

- Axion-like particles, dark photons, Heavy Neutral Leptons
- Signatures: long lifetimes LLPs

G (IP)

J (RF)

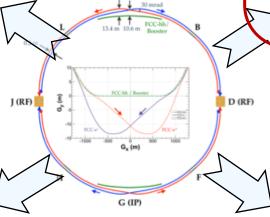
Detector Requirements in Brief

"Higgs Factory" Programme

- Momentum resolution of $\sigma_{pT}/p_T^2 \simeq 2 \times 10^{-5} \, \text{GeV}^{-1}$ commensurate with $\mathcal{O}(10^{-3})$ beam energy spread
- Jet energy resolution of 30%/VE in multi-jet environment for Z/W separation
- Superior impact parameter resolution for c, b tagging

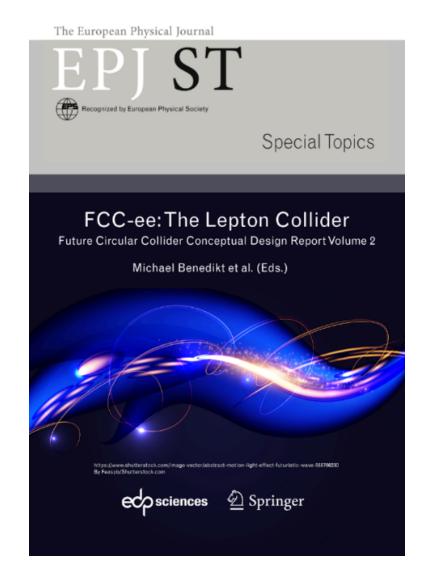
Ultra Precise EW Programme

- Absolute normalisation (luminosity) to 10⁻⁴
- Relative normalisation (e.g. $\Gamma_{had}/\Gamma_{\ell}$) to 10⁻⁵
- Momentum resolution "as good as we can get it"
 - Multiple scattering limited
- Track angular resolution < 0.1 mrad (BES from μμ)
- Stability of B-field to 10⁻⁶: stability of Vs meast.


Heavy Flavour Programme

- Superior impact parameter resolution: secondary vertices, tagging, identification, life-time measts.
- ECAL resolution at the few %/ VE level for inv. mass of final states with π^0 s or γ s
- Excellent π^0/γ separation and measurement for tau physics
- PID: K/π separation over wide momentum range for b and τ physics

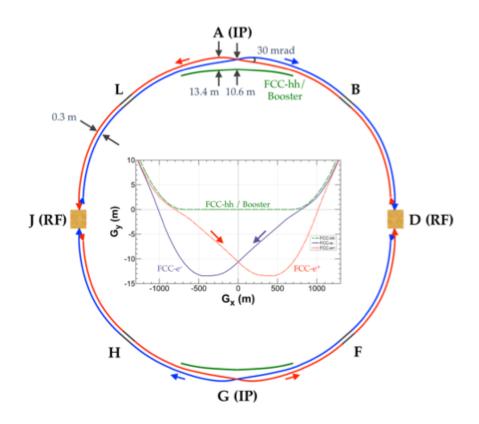
Feebly Coupled Particles - LLPs


Benchmark signature: $Z \rightarrow vN$, with N decaying late

- Sensitivity to far detached vertices (mm → m)
 - Tracking: more layers, continous tracking
 - Calorimetry: granularity, tracking capability
- Large decay lengths ⇒ extended detector volume
- Hermeticity

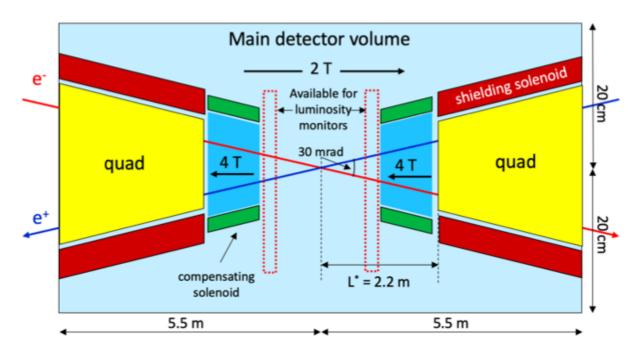
Status of Work

- Work presented here is largely extracted from Conceptual Design Report published in 2019
 - □ Conceptual level real design work ahead
- ◆ For Detector Design effort, a CDR+ is to be delivered for next European Strategy Update around ~2025
- ◆ Technical Design Report to follow



FCC-ee Conditions

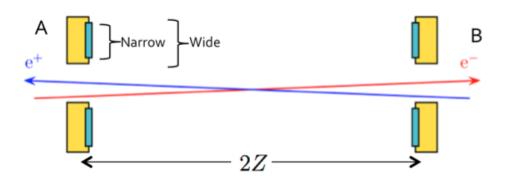
FCC-ee parameters		Z	WW	ZH	ttbar
√s	GeV	91.2	160	240	350-365
Luminosity / IP	10 ³⁴ cm ⁻² s ⁻¹	230	28	8.5	1.7
Bunch spacing	ns	19.6	163	994	3000
"Physics" cross section	pb	40,000	10	0.2	0.5
Total cross section (Z)	pb	40,000	30	10	8
Event rate	Hz	92,000	8,400	1	0.1
"Pile up" parameter [μ]	10 ⁻⁶	1,800	1	1	1


- Statistics
 - □ Very high statistics at the Z pole (70 kHz of visible Z decays)
 - □ Beam-induced background mild (compared to linear colliders), but not negligible
- Pile-up parameter very small (but not negligible for high precision measurements)
 - □ Aim at **10**⁻⁴ **absolute normalization** from small angle Bhabha scattering
 - □ Pile-up parameter ~20 times higher at Z-peak
- ◆ Vs calibration and measurement of Vs spread
 - □ 50 keV "continuous" E_{BEAM} measurement from resonant depolarization
 - Energy spread measurement from di-muon acollinearity (requires muon angular precision to better than 100 μrad)

Machine Detector Interface

- Large horizontal crossing angle 30 mrad
- Beams only mildly bent before IP to minimize synchrotron radiation into detector volumes
 - Beams bent mainly after IP

Central part of detector volume – top view

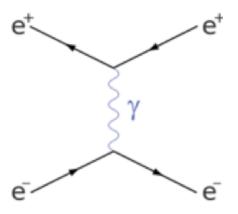

- Focussing quadrupoles protrude into detector volume
 - QC1 down to distance L* = 2.2 m
 - Necessary to shield quads from detector field
- Beams cross detector field at 15 mrad crossing angle
 - Compensate for detector field to avoid ε_y blow-up
 - Limits detector field to B = 2 Tesla
 - Luminosity calorimeters inside main detector volume at 1-1.2 m from IP

Luminosity Measurement

- ◆ Luminosity process: small angle elastic e⁺e⁻ (Bhabha) scattering
 - □ Dominated by *t*-channel photon exchange
 - Very strongly forward peaked

$$\sigma^{\text{Bhabha}} = \frac{1040 \text{ nb GeV}^2}{s} \left(\frac{1}{\theta_{\min}^2} - \frac{1}{\theta_{\min}^2} \right)$$

- □ Measured with set of two calorimeters; one at each side of the IP
 - Crossing beams: Center monitors on outgoing beam lines



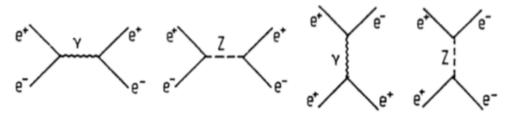
Two counting rates:

- SideA = NarrowA + WideB
- SideB = NarrowB + WideA

- Minimize dependence on beam parameters and misalignment:
 - Average over two counting rates: SideA + SideB
- □ Important systematics from acceptance definition: *minimum scattering angle*

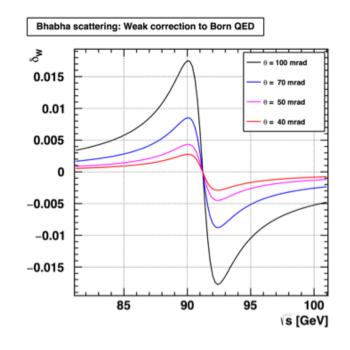
$$rac{\delta \sigma^{
m acc}}{\sigma^{
m acc}} \simeq rac{2\delta heta_{
m min}}{ heta_{
m min}} = 2 \left(rac{\delta R_{
m min}}{R_{
m min}} \oplus rac{\delta z}{z}
ight)$$

Normalisation to 10⁻⁴


- ◆ At LEP, after much effort, precision on absolute luminosity was dominated by theory
 - □ Example **OPAL** most precise measurement at LEP:

Theory: 5.4×10^{-4} Experiment: 3.4×10^{-4}

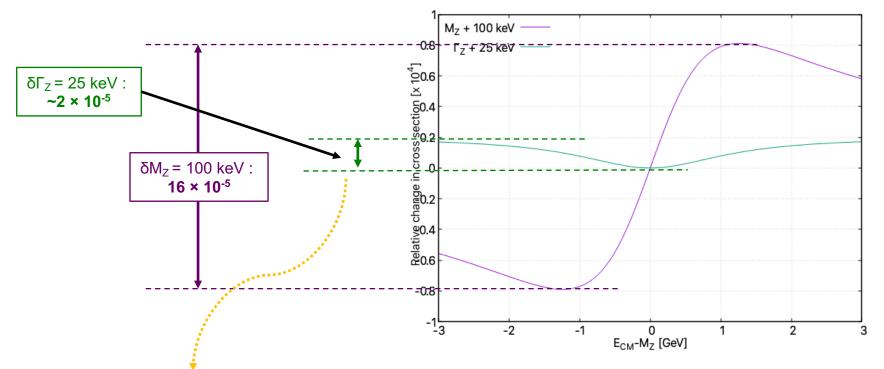
- \square Since then, theory precision has improved to 3.8×10^{-4}
- □ Will require major effort within **theory**


◆ Ambitious FCC-ee goal: Total precision to 10-4

Four graphs already at lowest order

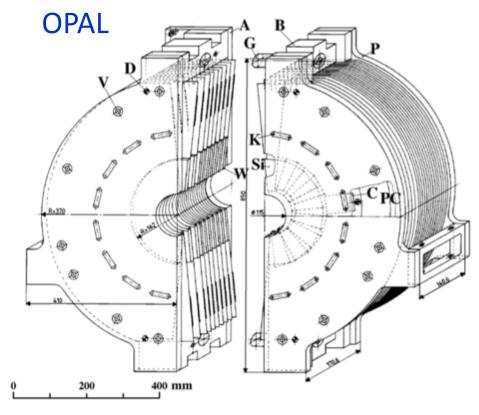
- Dependence on Z parameters (increasing with angle)
- Lots of radiative corrections between initial and final legs
- Will require major effort experimentally
 - * Second generation LEP luminosity monitors constructed and monitored to **tolerances better than 5** μm

[Jadach et al, 1812.01004]

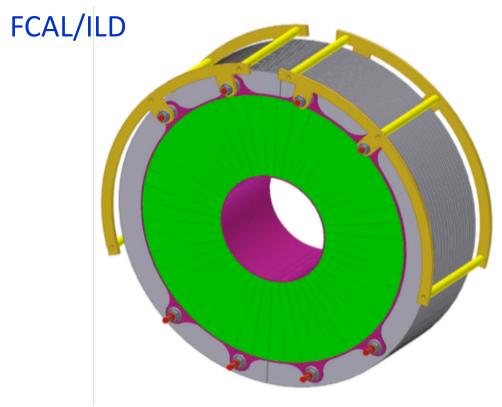


Relative Normalisation

◆ FCC-ee goal: Via Z line-shape scan, determine Z parameters to precisions:


$$\delta M_Z = 100 \text{ keV}$$
; $\delta \Gamma_Z = 25 \text{ keV}$

□ Plot shows relative change in cross section across Z resonance for parameter variation of this size



- ◆ Z width measurement most demanding: Need relative normalisation to about 10⁻⁵
 - □ Need statistics of order 10¹0
 - □ Need careful control of energy dependent effects

LumiCal Design Inspiration

Eur. Phys. J. C14 (2000) 373-425

EUDET-Memo-2010-06

30 layers of 1 X_o deep tungsten 30 Si layers (320 microns)

• segmentation 1.8 mm \times 7.5° Depth:

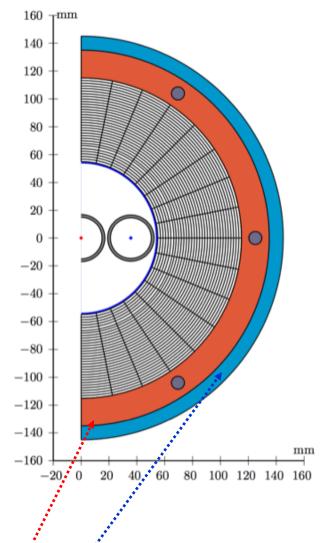
• Calorimeter: 134 mm

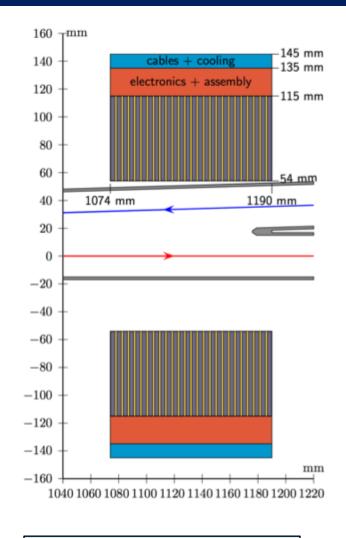
Total (incl. support): 175 mm

Inner radius:

Sensitive: 80 mmMechanical: 76 mm

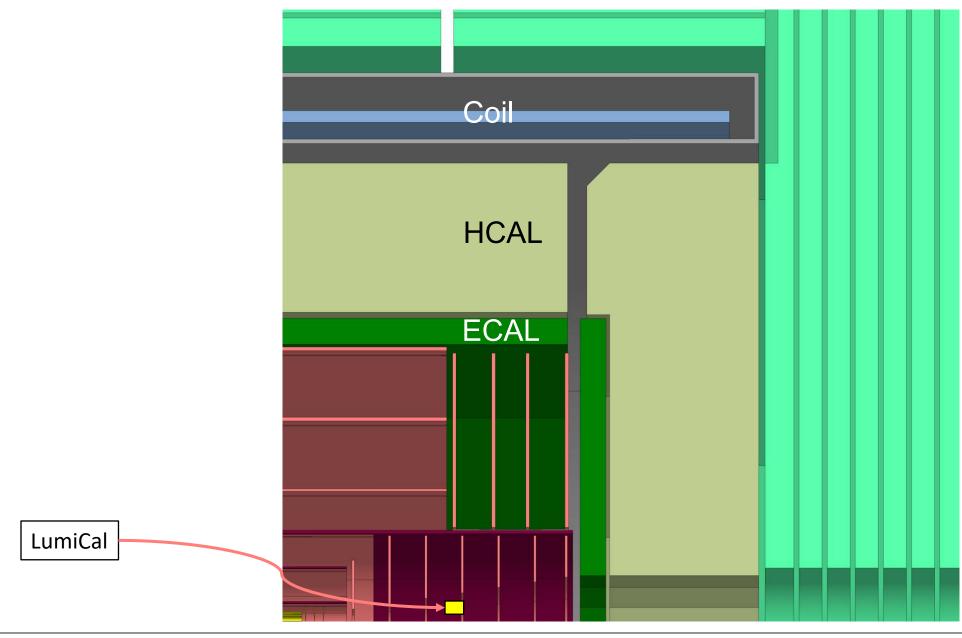
Outer radius:


Sensitive: 195.2 mm
Mechanical: ~260 mm


Mogens Dam / NBI Copenhagen LCWS2021 17 March, 2021

FCC-ee CDR LumiCal Concept

- ◆ W+Si sandwich: 3.5 mm W + Si sensors in 1 mm gaps
 □ Effective Moliere radius: ~15 mm
- ◆ 25 layers total: 25 X_o
- Cylindrical detector dimensions:
 - □ Radius:

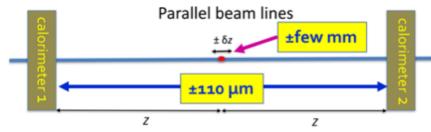

- 54 < r < 145 mm
- □ Along outgoing beam line: 1074 < z < 1190 mm
- Sensitive region:
 - □ 55 < r < 115 mm;
- Detectors centered on and perpendicular to outgoing beam line
- ◆ Angular coverage (>1 Moliere radius from edge):
 - □ Wide acceptance: 62-88 mrad
 - □ Narrow acceptance: 64-86 mrad
 - □ Bhabha cross section @ 91.2 GeV: 14 nb
- Region 115 < r < 145 mm reserved for services:
 - □ Red: Mechanical assembly, **read-out electronics**, cooling, equipment for alignment
 - □ Blue: Cabling of signals from front-end electronics to digitizers (behind LumiCals?)

Design inspired by LEP gen2 LumiCals and ILC/FCAL work (in particular Crakow group)

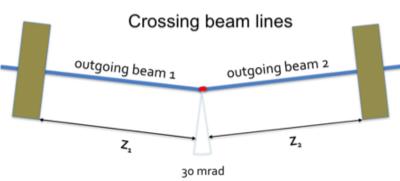
LumiCal inside CLD detector concept

LumiCal Geomtrical Tolerances

◆ Acceptance depends on **inner and outer radius** of acceptance definition

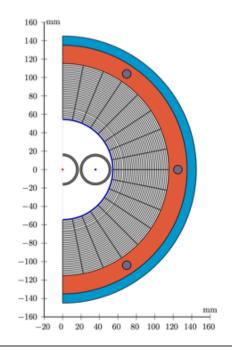

$$\frac{\Delta A}{A} \approx -\frac{\Delta R_{\rm in}}{1.6\,\mu{\rm m}} \times 10^{-4}$$

and


$$\frac{\Delta A}{A} \approx + \frac{\Delta R_{\text{out}}}{3.8 \,\mu\text{m}} \times 10^{-4}$$

- **□** Aim for construction and metrology precision of 1 μm
- ◆ Acceptance depends on (half) distance between the two luminometers

$$\frac{\Delta A}{A} \approx + \frac{\Delta Z}{55\,\mu\text{m}} \times 10^{-4}$$


- □ Situation is somewhat more complicated due to the crossing beam situation
- □ Now, it is the sum of distances, $Z_1 + Z_2$, which has to be known to 110 μm
- □ Idea to be pursued: Alignment using tracking detector as intermediate:
 - ❖ IP/tracker: dimuon events
 - LumiCal/tracker: laser tracks

Most critical parameter: Inner acceptance radius to ~1 μm

Very compact device:

- Possible to construct Si sensors from a single Si crystal
- However, vertical assembly of half barrels
- Or possibly build as one piece and thread onto beam pipe?

15

Alignment relative to IP position

• With 2 mrad difference between **narrow** and **wide**, the acceptance depends to only second order on displacements of IP relative to LumiCal system for displacements up to

$$\delta r = 0.5 \text{ mm}$$
 transverse and $\delta z = 20 \text{ mm}$ longitudinal

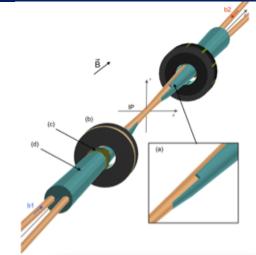
- □ Should dispacements be larger, need to redefine **narrow** and **wide**
- Within these tolerances, the acceptance depends rather weakly on IP displacements

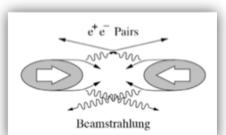
$$\frac{\Delta A}{A} \approx + \left(\frac{\delta r}{0.6\,\mathrm{mm}}\right)^2 \times 10^{-4} \qquad \mathrm{and} \qquad \frac{\Delta A}{A} \approx - \left(\frac{\delta z}{6\,\mathrm{mm}}\right)^2 \times 10^{-4}$$

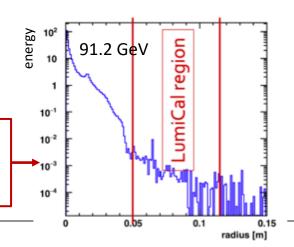
$$\frac{\Delta A}{A} \approx -\left(\frac{\delta z}{6\,\mathrm{mm}}\right)^2 \times 10^{-4}$$

- Conclusion: Optimal situation is if interaction point is centered wrt LumiCal coordinate system within the following tolerances:
 - □ Few hundred microns in radial direction
 - □ Few mm in longitudinal direction

- ◆ Synchrotron radiation
 - \square Reduced to <u>negligible</u> level of 7 MeV per BX into LumiCal at \sqrt{s} = 365 GeV by beam-pipe shielding
 - ❖ Before shielding, 340 MeV per BX
 - Lower at lower vs
- ◆ Beam-gas
 - □ **Dominant background at LEP**: Two arm coincidence of off-momentum electrons from beam-gas interaction scattered into LumiCal acceptance by the quadrupoles
 - □ At FCC-ee, due to stronger focussing, the luminosity to beam current ratio is far higher
 - □ Correspondingly, this background found to be very small after beam-pibe shielding
- e⁺e⁻ pairs from beam-beam interactions (dominant process: Incoherent pair production)
 - □ Particles generally very soft ⇒ strongly focussed by detector field and by strong electromagnetic field of opposing beam

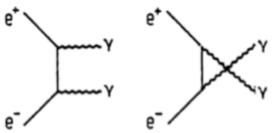

√s	# e [±] total	Energy total	# e [±] LumiCal	Energy LumiCal
91.2 GeV	400	250 GeV	0.3	o.o6 GeV
365 GeV	3100	4500 GeV	15	3.2 GeV
	1	1	1	1


[N.B. Numbers given are per end/LumiCal]


Rather many particles, large energy

Most particles / energy generated and/or focussed away from LumiCals.

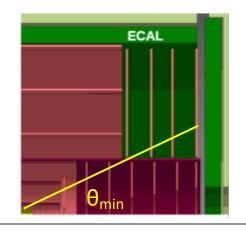
At Vs = 91 GeV, negligible. Increasing with Vs



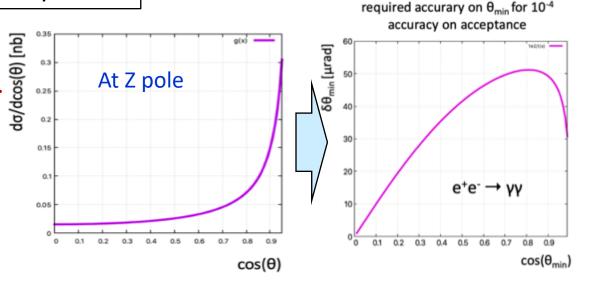
Alternative luminosity process – Large angle $e^+e^- \rightarrow \gamma\gamma$

QED process

Goal: Absolute luminosity to 10⁻⁴


$$\sigma(e^+e^- \to \gamma\gamma) \ = \ \frac{2\,\pi\,\alpha^2}{s} \left\{ \ln\frac{1+\cos\theta_{min}}{1-\cos\theta_{min}} - \cos\theta_{min} \right\}$$

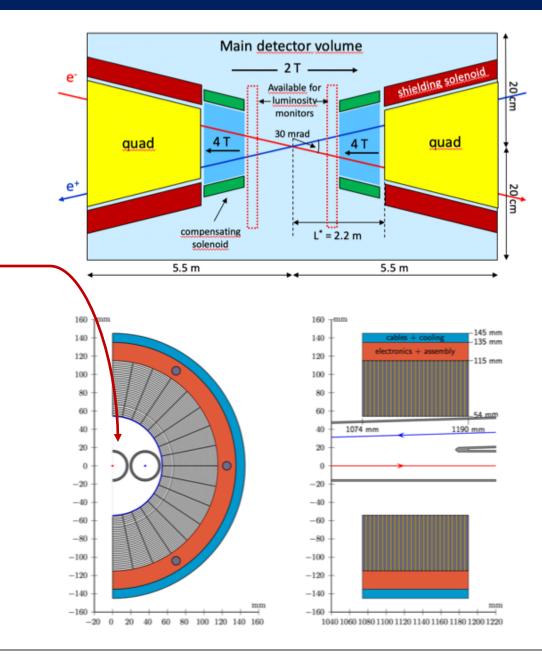
$$(\theta_{\min} \, \text{defines the ECAL acceptance})$$
 Forward peaked


• Measured in main calorimeter system from minimum angle θ_{min} (to 90°)

◆ Rate larger than physics rates everywhere except at Z pole

 \Box Example $\theta_{min} = 20^{\circ} (\cos\theta < 0.94)$

Energy	Process	Cross Section	Large angle e⁺e⁻ → γγ	
90 GeV	$e^+e^- \rightarrow Z$	40 nb	o.o39 nb	
160 GeV	$e^+e^- \rightarrow W^+W^-$	4 pb	15 pb	
240 GeV	$e^+e^- \rightarrow ZH$	0.2 pb	5.6 pb	
350 GeV	$e^+e^- \rightarrow tt$	o.5 pb	2.6 pb	



- For $cos(\theta_{min}) = 0.94$, $\delta\theta_{min} \simeq 46 \mu rad$ is required
 - \Box At z_{ref} = 2.25 m, corresponds to
 - ❖ Acceptance inner radius: r_{min} = 0.82 m
 - * Inner acceptance radius to be known to better than δr_{min} = 100 µm, if z_{ref} perfectly known
 - □ Experimental challenge
 - Precisely machined pre-shower device?
 - All other contributions to be kept very low
 - No holes, no cracks ...

Other forward instrumentation?

- ◆ So far, focus has been primarily on very ambitious goal of normalisation to 10⁻⁴
 - □ Cylindrical device chosen in order to maintain control over geometry
- Need also to consider hermeticity of detector down towards beam line
 - □ There seems to be no room for instrumentation behind LumiCals
 - Area very densely packed with magnet system
 - □ Room at some azimuthal angles for instrumentation at lower radii than current LumiCal concept
 - □ Not obvious how to instrument this region and at the same time retain 1µm precison on acceptance definition of LumiCal

Outlook

- ◆ Much work ahead for design of lumionosity monitors and forward region
 - □ Detailed layout of very crowded MDI region including (compensating) magnet system(s), flanges, pumps, etc.
 - □ Design and integration of very forward region of main detector system towards MDI and luminosity monitors
 - □ Engineering level design of luminosity monitors:
 - * Mechanical design satisfying ~1 μm precision of acceptance borders
 - Closing as hermetically as posisble towards beam line without sacrificing mechanical precision
 - * Fast readout electronics preferentially operating at 20 ns BX spacing to minimize event pile-up
 - ❖ Cooling system to maintain temperature to within tolerance of about ±1 K
 - Support structure with minimal coupling to magnet system
 - ❖ Design of system for maintaining and monitoring geometrical precision of monitors via metrology and alignment
 - □ Control of lower angle of main detector accetance to 100 μm for alternative lumi process $e^+e^- \rightarrow \gamma \gamma$

Extras