Top quark EW couplings and EFT fits

G. Durieux,¹ M. Miralles,² V. Miralles,² M. Moreno Llácer,² A. Peñuelas,³ M. Perelló,² M. Vos,² C. Zhang,⁴

¹ Physics Department, Technion-Israel Institute of Technology, ² Universitat de València and CSIC, ³ U.Mainz, Prisma, ⁴ Institute of High Energy Physics, Chinese Academy of Sciences

International Workshop on Future Linear Colliders, LCWS2021 March 17th, 2021

비로 (로) (로) (로) (토)

- Being the heaviest particle of the SM the top-quark is a good candidate for searching for new physics
- Its EW couplings are specially relevant in many extensions of the SM
- As the top-quark was not produced in LEP its EW sector could not be precisely measured until now
- The LHC data allows, finally, for precise measurements of this sector
- Here we present results of a global fit to top-quark EW couplings
- We used the most recent available data from the LHC (ATLAS and CMS), and also from LEP and Tevatron
- We include the QCD corrections at NLO on most of the observables used
- The fits have been performed using HEPfit [1910.14012]

・ロト ・ 早 ・ ・ ヨ ト ・ ヨ ヨ ・ クタマ

• We adopt an EFT description to parametrize the deviations from the SM.

$$\mathscr{L}_{\mathsf{eff}} = \mathscr{L}_{\mathsf{SM}} + \frac{1}{\Lambda^2} \sum_i C_i O_i + \mathscr{O}\left(\Lambda^{-4}\right).$$

- The Wilson coefficients can be later interpreted in terms of NP mediators.
- We include Λ^{-2} terms from the interference between the SM and D6 operators.
- We also include Λ^{-4} operators arising from two insertions of D6 operators.
- The effects of D8 operators, contributing to the same Λ^{-4} order, are omitted.

$$\sigma = \sigma_{\mathsf{SM}} + \underbrace{\frac{1}{\Lambda^2} \sum C_i O_i}_{\mathsf{SM} \times \mathsf{D6}} + \underbrace{\left(\frac{1}{\Lambda^2} \sum C_i O_i\right) \left(\frac{1}{\Lambda^2} \sum C_i O_i\right)}_{\mathsf{D6} \times \mathsf{D6}} + \underbrace{O(1/\Lambda^4)}_{\mathsf{SM} \times \mathsf{D8}}$$

- We only consider the EW two-fermion operators and ignore the imaginary parts.
- The four-fermion operators are ignored.

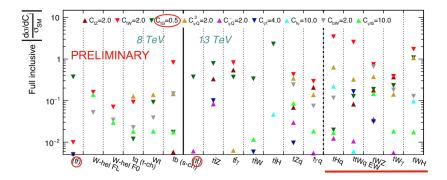
(日)

EW top-quark EFT Basis

Left and right-handed couplings of the t- and b-quark to the Z	EW dipole operators
$\begin{array}{ll} O^{3}_{\varphi Q} &\equiv \frac{1}{2} \left(\bar{q} \tau^{I} \gamma^{\mu} q \right) \left(\varphi^{\dagger} i \overleftrightarrow{D}^{I}_{\mu} \varphi \right) \\ O^{1}_{\varphi Q} &\equiv \frac{1}{2} \left(\bar{q} \gamma^{\mu} q \right) \left(\varphi^{\dagger} i \overleftrightarrow{D}_{\mu} \varphi \right) \\ O_{\varphi u} &\equiv \frac{1}{2} \left(\bar{u} \gamma^{\mu} u \right) \left(\varphi^{\dagger} i \overleftrightarrow{D}_{\mu} \varphi \right) \\ O_{\varphi d} &\equiv \frac{1}{2} \left(\bar{d} \gamma^{\mu} d \right) \left(\varphi^{\dagger} i \overleftrightarrow{D}_{\mu} \varphi \right) \end{array}$	$\begin{array}{ll} O_{uW} & \equiv \left(\bar{q}\tau^{I}\sigma^{\mu\nu}u\right)\left(\varepsilon\phi^{*}W_{\mu\nu}^{I}\right) \\ O_{dW} & \equiv \left(\bar{q}\tau^{I}\sigma^{\mu\nu}d\right)\left(\phi W_{\mu\nu}^{I}\right) \\ O_{uB} & \equiv \left(\bar{q}\sigma^{\mu\nu}u\right)\left(\varepsilon\phi^{*}B_{\mu\nu}\right) \\ O_{dB} & \equiv \left(\bar{q}\sigma^{\mu\nu}d\right)\left(\phi B_{\mu\nu}\right) \end{array}$
Chromo magnetic dipole operators	Top/Bottom yukawa
Chromo magnetic dipole operators $O_{uG} \equiv \left(\bar{q}\sigma^{\mu\nu}T^{A}u\right) \left(\varepsilon\varphi^{*}G^{A}_{\mu\nu}\right)$ $O_{dG} \equiv \left(\bar{q}\sigma^{\mu\nu}T^{A}d\right) \left(\varphi G^{A}_{\mu\nu}\right)$	$\begin{array}{l} Top/Bottom yukawa \\ O_{u\varphi} & \equiv (\tilde{q}u) \left(\varepsilon \varphi^* \; \varphi^{\dagger} \varphi \right) \\ O_{d\varphi} & \equiv (\tilde{q}d) \left(\varphi \; \varphi^{\dagger} \varphi \right) \end{array}$
$O_{uG} \equiv \left(\bar{q} \sigma^{\mu u} T^A u ight) \left(\varepsilon \varphi^* G^A_{\mu u} ight)$	$O_{u\varphi} \equiv (\bar{q}u) \left(\varepsilon \varphi^* \ \varphi^{\dagger} \varphi \right)$ $O_{d\varphi} \equiv (\bar{q}d) \left(\varphi \ \varphi^{\dagger} \varphi \right)$

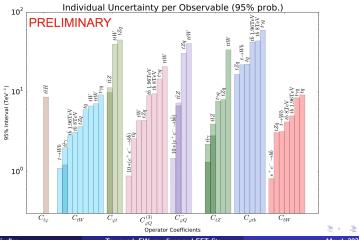
Rotation of Warsaw basis following [1802.07237] (LHC Top WG)

$$O^{1}_{\varphi Q} \rightarrow O^{-}_{\varphi Q} = O^{1}_{\varphi Q} - O^{3}_{\varphi Q}; \qquad \qquad O_{xB} \rightarrow O_{xZ} = -\sin\theta_{W}O_{xB} + \cos\theta_{W}O_{xW}$$

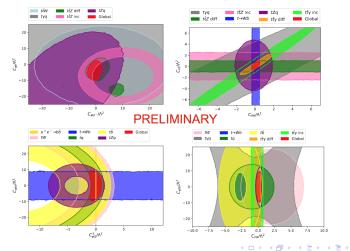

Methods & Data

- Dependence of the observables calculated at NLO in QCD with the Monte Carlo generator MG5_aMC@NLO [JHEP 07 (2014) 079]
- SMEFT@NLD [arXiv:2008.11743] UFO model was used except for C_{bW} , $C_{\phi tb}$, C_{bZ} and $C_{\phi b}$ where the TEFT_EW [JHEP 05 (2016) 052] UFO model was used
- The fit is performed as a Bayesian statistical analysis of the model using the open source HEPfit [1910.14012]

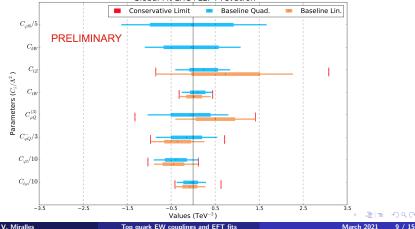
Process	Observable	\sqrt{s}	$\int \mathscr{L}$	Experiment
$pp ightarrow t ar{t} H$ NLO	cross section	13 TeV	$140 \ {\rm fb}^{-1}$	ATLAS
$pp ightarrow t ar{t} W$ nlo	cross section	13 TeV	36 fb ⁻¹	CMS
$pp ightarrow t ar{t} Z$ NLO	(differential) x-sec.	13 TeV	$140 { m ~fb^{-1}}$	ATLAS
$pp ightarrow t ar{t} \gamma$ NLO	(differential) x-sec.	13 TeV	$140 { m ~fb}^{-1}$	ATLAS
pp ightarrow tZq NLO	cross section	13 TeV	$140 { m ~fb}^{-1}$	CMS
$pp ightarrow t \gamma q$ NLO	cross section	13 TeV	36 fb^{-1}	CMS
pp ightarrow tb (s-ch) NLO	cross section	8 TeV	$20 {\rm fb}^{-1}$	ATLAS+CMS
pp ightarrow tW LO	cross section	8 TeV	20 fb^{-1}	ATLAS+CMS
pp ightarrow tq (t-ch) NLO	cross section	8 TeV	20 fb^{-1}	ATLAS+CMS
$t ightarrow W^+ b$ lo	F_0 , F_L	8 TeV	20 fb^{-1}	ATLAS+CMS
$par{p} o tar{b}$ (s-ch) ьо	cross section	1.96 TeV	9.7 fb $^{-1}$	Tevatron
$e^-e^+ o bar{b}$ lo	R_b , A^{bb}_{FBLR}	\sim 91 GeV	202.1 pb^{-1}	LEP


Sensitivity

- The observables and coefficients in red are not included
- The $pp \rightarrow t\bar{t}$ process is omitted in the fit in order to be consistent as it is used to reduce the dependence of $pp \rightarrow t\bar{t}X$ on Wilson coefficients that have not been included.

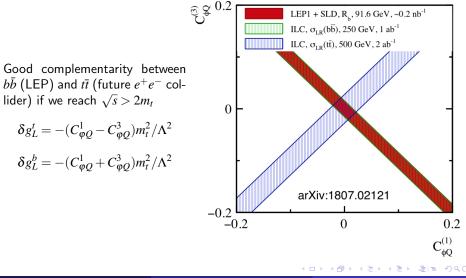

Results - Sensitivity Individual Constraints

- Good interplay between the parameters and chosen observables
- The differential cross sections (darker regions) provide the best constraints for some observables
- LEP still generates the best constraints in some cases

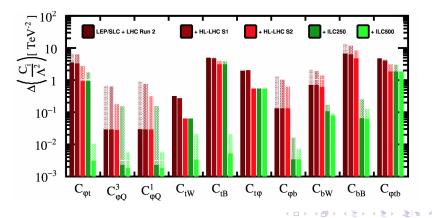

Results - Complementarity Between Observables

- Very good complementarity between the observables
- The global fit marginalised limit is quite close to the intersection of individual fits
 - \rightarrow The data set is diverse enough to avoid the existence of blind directions

Results - Global Fit


- We are able to find constraints even with the linear (only Λ^{-2} terms) global fit and they are similar to the ones from the quadratic ($\Lambda^{-2} + \Lambda^{-4}$ terms) global fit for most cases
- We have checked the impact of adding estimated correlations between the observables as well as the effect of extending our basis with three more operators, the four-fermion operators $C_x^+ = C_x^1 + C_x^2$ with x = t, b using the notation of [1807.02121], and C_{tG}
- Conservative Limit: Envelope found from combining the results from all the global fits Global Fit LHC+LEP+Tevatron

- All the results are compatible with the SM with a 95% probability
- We find a reduction of the uncertainty of all the parameters of around a factor two with respect to our previous work [JHEP12(2019)098]
- Adding important correlations between the observables or even some more operators does not dramatically change the results
- LEP measurements provide tight bounds on several operators as the left-handed coupling $C_{\varphi Q}^-$ and $C_{\varphi Q}^{(3)}$
- The limits are extremely robust even when we only consider linear terms, except for C_{bW} , $C_{\varphi tb}$ and C_{tZ}
- The addition of the differential cross sections of $pp \rightarrow t\bar{t}Z$ and $pp \rightarrow t\bar{t}\gamma$ have an important effect on C_{tZ} and $C_{\varphi t}$
- We find the most stringent bound on top EW couplings from an EFT including all relevant 2-fermions degrees of freedom (see [JHEP 04 (2019) 100], [JHEP 02 (2020) 131], [CMS-PAS-TOP-19-001])


< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Future Colliders - Complementarity on e^+e^- colliders

Future Colliders - Prospects for EW Top-Quark Couplings

- Results from [JHEP12(2019)098] show the extraordinary impact of adding the data from a e^+e^- collider working at 500 GeV \rightarrow It is crucial to go $\sqrt{s} > 2m_t$
- The LHC Run 2 data here refers to the data available in mid 2019, with the current data the errors are reduced around a factor two

Future Colliders - Prospects for Top-Quark+Higgs Sector

For current limits on this sector look at [2012.02779] and [1910.03606]

- The determination of the Higgs boson couplings at ILC250 is degraded by the additional top-quark operators
- We can recover the original bounds by the inclusion of precise measurements of top-quark EW couplings at the LHC
- The physical Higgs couplings are relatively robust, as the top mass is larger than the energy scale of EW processes
- If the ILC reaches 500 GeV it will provide very precise constraints on the top operators

Summary

- With the current precision of the LHC we are able to constrain the top-quark EW sector even when we only consider the linear (Λ^{-2}) terms
- The quadratic terms (Λ^{-4}) are specially relevant for C_{bW} and $C_{\varphi tb}$ whose linear dependence with our observables is zero as we are in the limit $m_b \rightarrow 0$
- Although there is still no way for calculating the correlations between the observables it seems that they do not have a dramatic impact in the final result
- The addition of the dependence on more operators (like some four-fermion operators) does not appear to reduced the limits found significantly
- If we want to reduce the allowed ranges in some order of magnitudes it is crucial to build a e^+e^- collider working at $\sqrt{s} > 2m_t$
- For a precise fit on the combined sector of the top plus the Higgs it would be enough with the data of a e^+e^- collider working at $\sqrt{s} = 250$ GeV given the expected precision that the LHC could achieve for the top-quark EW couplings

<日><目><目><目><目><目><目><目
 <日><<日>

Thank you!

PRELIMINARY Numerical values for the Wilson Coefficients

$C/\Lambda^2(\text{TeV}^{-2})$	Baseline Quad.	Baseline Lin.	Robust
$C_{t\varphi}$	[-3.7, 2.9]	[-4.1, 2.7]	[-4.1, 6.4]
$C_{\varphi O}^{-1}$	[-2.5, 1.6]	[-2.86, 0.76]	[-2.9, 2.2]
$egin{array}{ccc} C^{arphi Q} \ C^3_{arphi Q} \end{array} \end{array}$	[-1.0, 0.8]	[-0.40, 1.41]	[-1.3, 1.4]
$C_{\varphi t}$	[-8.9, 1.2]	[-8.8, 1.1]	[-10.3, 1.2]
C_{tW}	[-0.26, 0.45]	[-0.32, 0.40]	[-0.32, 0.45]
C_{tZ}	[-0.40, 0.84]	[-0.85, 2.27]	[-0.85, 3.08]
$C_{\varphi tb}$	[-8.1, 8.3]	-	-
C_{bW}	[-1.1, 1.1]	_	_

= 990

・ロト ・日下・ ・ 日下