

Advantages of a Very High Energy Lepton Collider

Dario Buttazzo

Istituto Nazionale di Fisica Nucleare

International Workshop on Future Linear Colliders, LCWS2021 – 17.3.2021

Why a High Energy Lepton Collider?

- Recent progress on the feasibility of a high-energy lepton collider: MAP, MICE, LEMMA, Muon Collider coll. @ CERN, PWFA, ...
- Colliders are expensive: need a big improvement in as many as possible different directions. A Very High Energy Lepton Collider can do that!
- Need for physics potential evaluation (to define energy, luminosity and detector performance goals). Strong interest in the high-energy community: ^{1807.04743} 2003.13628 2006.16277 2009.11287 2012.11555 2102.08386 ^{1901.06150} 2005.10289 2007.14300 2012.02769 2101.10334 etc.u.
- Most considerations here apply equally well to a Muon Collider, to a High-Energy upgrade of a Linear Collider, or any other type of VHELC.
- Luminosity benchmark:

$$L \gtrsim \frac{5 \text{ years}}{\text{time}} \left(\frac{\sqrt{s}}{10 \text{ TeV}}\right)^2 2 \cdot 10^{35} \text{ cm}^{-2} \text{ s}^{-1}$$

necessary to perform SM measurements with ~ % precision

Physics cases for a High Energy Lepton Collider

From a theorist's point of view: Energy AND Precision!

Physics cases for a High Energy Lepton Collider

From a theorist's point of view: Energy AND Precision!

High-energy probes

+ NP effects are more important at high energies

Effective at LHC, FCC-hh, CLIC: "energy helps precision"
 1609.08157
 1712.01310
 token to the extreme of a V/UEL C with 10's of To//I

... taken to the extreme at a VHELC with 10's of TeV!

+ Longitudinal $2 \rightarrow 2$ scattering amplitudes at high energy:

Process	BSM Amplitude
$\underbrace{\ell_L^+ \ell_L^- \to Z_0 h}_{\bar{\nu}_L \nu_L \to W_0^+ W_0^-}$	$s\left(G_{3L}+G_{1L}\right)\sin\theta_{\star}$
$ \begin{pmatrix} \ell_L^+ \ell_L^- \to W_0^+ W_0^- \\ \bar{\nu}_L \nu_L \to Z_0 h \end{pmatrix} $	$s\left(G_{3L}-G_{1L}\right)\sin\theta_{\star}$
$\ell_R^+\ell_R^- \to W_0^+W_0^-, Z_0h$	$s G_{lR} \sin \theta_{\star}$
$ \bar{\nu}_L \ell_L^- \to W_0^- Z_0 / W_0^- h \\ \nu_L \ell_L^+ \to W_0^+ Z_0 / W_0^+ h $	$\sqrt{2}sG_{3L}\sin\theta_{\star}$

Determined by 3 fermion/scalar current-current interactions (Warsaw):

$$\begin{aligned} \mathcal{O}_{3L} &= \left(\bar{\mathrm{L}}_L \gamma^{\mu} \sigma^a \mathrm{L}_L \right) \left(i H^{\dagger} \sigma^a \overset{\leftrightarrow}{D}_{\mu} H \right), \\ \mathcal{O}_{1L} &= \left(\bar{\mathrm{L}}_L \gamma^{\mu} \mathrm{L}_L \right) \left(i H^{\dagger} \overset{\leftrightarrow}{D}_{\mu} H \right), \\ \mathcal{O}_{lR} &= \left(\bar{l}_R \gamma^{\mu} l_R \right) \left(i H^{\dagger} \overset{\leftrightarrow}{D}_{\mu} H \right). \end{aligned}$$

"high-energy primary effects"

+ Longitudinal $2 \rightarrow 2$ scattering amplitudes at high energy:

 In flavor-universal theories, they are generated by SILH operators (via e.o.m.):

$$G_{1L} = \frac{1}{2}G_{lR} = \frac{{g'}^2}{4}(C_B + C_{HB})$$
$$G_{3L} = \frac{g^2}{4}(C_W + C_{HW})$$

Determined by 3 fermion/scalar current-current interactions (Warsaw):

$$\begin{aligned} \mathcal{O}_{3L} &= \left(\bar{\mathrm{L}}_L \gamma^{\mu} \sigma^a \mathrm{L}_L \right) \left(i H^{\dagger} \sigma^a \overset{\leftrightarrow}{D}_{\mu} H \right), \\ \mathcal{O}_{1L} &= \left(\bar{\mathrm{L}}_L \gamma^{\mu} \mathrm{L}_L \right) \left(i H^{\dagger} \overset{\leftrightarrow}{D}_{\mu} H \right), \\ \mathcal{O}_{lR} &= \left(\bar{l}_R \gamma^{\mu} l_R \right) \left(i H^{\dagger} \overset{\leftrightarrow}{D}_{\mu} H \right). \end{aligned}$$

"high-energy primary effects"

$$\begin{split} \mathcal{O}_W &= \frac{ig}{2} \left(H^{\dagger} \sigma^a \overset{\leftrightarrow}{D^{\mu}} H \right) D^{\nu} W^a_{\mu\nu} \\ \mathcal{O}_B &= \frac{ig'}{2} \left(H^{\dagger} \overset{\leftrightarrow}{D^{\mu}} H \right) \partial^{\nu} B_{\mu\nu} \\ \mathcal{O}_{HW} &= ig (D^{\mu} H)^{\dagger} \sigma^a (D^{\nu} H) W^a_{\mu\nu} \\ \mathcal{O}_{HB} &= ig' (D^{\mu} H)^{\dagger} (D^{\nu} H) B_{\mu\nu} \end{split}$$

High-energy di-bosons

• C_W and C_B determined from high-energy $\mu^+\mu^- \rightarrow ZH$, W+W- cross-sections Limits on C_{W,B} scale as E²

+ In universal theories, $C_{W,B}$ related with EW observables $\hat{S} = m_W^2 (C_W + C_B)$

- Muon collider: 10 TeV : $C_W \lesssim (40 \text{ TeV})^{-2}$, $\hat{S} \lesssim 10^{-6}$ 30 TeV : $C_W \lesssim (120 \text{ TeV})^{-2}$, $\hat{S} \lesssim 10^{-7}$

High-energy di-bosons

• C_W and C_B determined from high-energy $\mu^+\mu^- \rightarrow ZH$, W+W- cross-sections Limits on C_{W,B} scale as E²

+ In universal theories, $C_{W,B}$ related with EW observables $\hat{S} = m_W^2 (C_W + C_B)$

- Muon collider: 10 TeV : $C_W \lesssim (40 \text{ TeV})^{-2}$, $\hat{S} \lesssim 10^{-6}$ 30 TeV : $C_W \lesssim (120 \text{ TeV})^{-2}$, $\hat{S} \lesssim 10^{-7}$

High-energy tri-bosons

 Gauge boson radiation becomes important at high energies (Sudakov double-log enhancement of soft-collinear emissions)

 $\mu^+\mu^- \rightarrow VVV$ not much suppressed w.r.t. $\mu^+\mu^- \rightarrow VV$ (V = W[±], Z, H)

• This allows to access the charged processes $\ell^{\pm}\nu \rightarrow W^{\pm}Z, W^{\pm}H$ "effective neutrino approximation"

- NB: also 2 → 2 scatterings receive large radiative corrections:
 "soft" EW radiation must be taken into account properly...
- Inclusive NLO study of VV and VVV

High-energy probes: summary

 A muon collider is able to probe new physics scales > 100 TeV

$$\bullet \quad \ell^+ \ell^- \to VV: \quad \hat{S} \sim m_W^2 / m_\star^2 \lesssim 10^{-7}$$

Example: Composite Higgs

Almost order of magnitude improvement w.r.t. FCC / CLIC!

High-energy probes: summary

- A muon collider is able to probe new physics scales > 100 TeV
 - $\ \ \ell^+\ell^- \to VV: \quad \hat{S} \sim m_W^2/m_\star^2 \lesssim 10^{-7}$

Example: Composite Higgs

Almost order of magnitude improvement w.r.t. FCC / CLIC!

High rate probes: Higgs physics

- Very large single Higgs VBF rate (10⁷–10⁸ Higgs bosons)
 - Precision on Higgs couplings driven by systematics:
 - ~ Higgs factory, maybe 1‰
 - Rare/Exotic Higgs decays!
- Large double Higgs VBF rate
 - Higgs 3-linear coupling

A High Energy Lepton Collider is a "vector boson collider" For "soft" final state $\hat{s} \sim m_{\rm EW}^2$ cross-section is enhanced

Double Higgs production

Number of events ~ $s \log(s/m_h^2) \approx 10^5$ at 14 TeV

Naïve estimate of the reach: $\delta \sigma \sim (N \times \epsilon)^{-1/2} \approx 1 \%$ reconstruction eff. $\sim 30 \%$ BR $(hh \rightarrow 4b) = 34 \%$ $\epsilon \sim 10 \%$

- + Acceptance cuts in polar angle θ and p_T of jets:
 - hh signal is strongly peaked in forward region

 Contribution from trilinear coupling is more central: loss due to angular cut is less important

Double Higgs production

- Backgrounds are important and cannot be neglected (see also CLIC study 1901.05897)
 - Mainly VBF di-boson production: Zh & ZZ, but also WW, Wh, WZ...
 - Precise invariant mass reconstruction is crucial to isolate signal

NB: (Very!) simplified background analysis (at parton level!)

All this should be done properly with a detector simulation (as has been done for CLIC).

However, perfect agreement with 1901.05897!

+ Reach on Higgs trilinear coupling:

B, Franceschini, Wulzer 2012.11555

see also 2005.12204, 2008.10289

E [TeV]	£ [ab-1]	N _{rec}	$\delta\sigma \sim N_{\rm rec}^{-1/2}$	δκ3
3	5	170	~ 7.5%	~ 10%
10	10	620	~ 4%	~ 5%
14	20	1340	~ 2.7%	~ 3.5%
30	90	6,300	~ 1.2%	~ 1.5%

- Weak dependence on detector acceptance
- Some dependence on detector energy resolution (to remove bkg)
- + For comparison, reach of FCC-hh is $\delta \kappa_3 \sim 3.5\% 8\%$ depending on systematics assumptions

Two-parameter EFT fit

SM Effective Theory:

y:
$$\mathscr{L}_{EFT} = \mathscr{L}_{SM} + \sum_{i} C_{i} \mathcal{O}_{i}^{(6)} + \cdots$$

+ Trilinear coupling is affected by two operators:

$$\kappa_3 = 1 + v^2 \left(C_6 - \frac{3}{2} C_H \right)$$

$$\mathcal{O}_6 = -\lambda |H|^6$$
 $\mathcal{O}_H = \frac{1}{2} \left(\partial_\mu |H|^2 \right)^2$

O_H also affects single Higgs couplings universally:

$$\kappa_{V,f} = 1 - v^2 C_H/2$$

$$\sigma = \sigma_{\rm SM} + a_1 C_6 + b_1 C_H + a_2 C_6^2 + b_2 C_H^2 + d_2 C_H C_6$$

large degeneracy in total cross-section: coefficients not determined in general

Two-parameter EFT fit

- SM Effective Theory: $\mathscr{L}_{EFT} = \mathscr{L}_{SM} + \sum C_i \mathscr{O}_i^{(6)} + \cdots$
 - Trilinear coupling is affected by two operators:

$$\kappa_3 = 1 + v^2 \left(C_6 - \frac{3}{2} C_H \right)$$

$$\mathcal{O}_6 = -\lambda |H|^6$$
 $\mathcal{O}_H = \frac{1}{2} \left(\partial_\mu |H|^2 \right)^2$

O_H also affects single Higgs couplings universally:

$$\kappa_{V,f} = 1 - v^2 C_H / 2$$

$$\sigma = \sigma_{\rm SM} + a_1 C_6 + b_1 C_H + a_2 C_6^2 + b_2 C_H^2 + d_2 C_H C_6$$

large degeneracy in total cross-section: coefficients not determined in general

c_H can be constrained from Higgs couplings (but indirect measurement)

 $\Delta \kappa_V \sim C_H v^2 \lesssim {\rm few} \times 10^{-3}$

Double Higgs at high mass

contribution from O_H grows as E²

Double Higgs at high mass

measurement of C_H (WWhh coupling)

contribution from O_H grows as E²

Double Higgs at high mass

- + Fully differential analysis in p_T and M_{hh} to optimize combined sensitivity to C_H and C_6
- Very boosted Higgs bosons: treat them as a single h-jet, without reconstructing the 4 b's.
 We assume a boosted-H tagging efficiency ~ 50%

 $C_H \times \nu^2$

Summary

High-rate measurements

Backup

High-energy WW: angular analysis

- O_{W,B} contribute to longitudinal scattering amplitudes:
- In the SM, large contribution to $\mu^+\mu^- \rightarrow W^+W^$ from transverse polarizations.

$$\mathcal{A}_{00}^{(\text{NP})} = s \left(G_{1L} - G_{3L}\right) \sin \theta_{\star}$$
$$\mathcal{A}_{-+} = -\frac{g^2}{2} \sin \theta_{\star}$$
$$\mathcal{A}_{+-} = g^2 \cos^2 \frac{\theta_{\star}}{2} \cot^2 \frac{\theta_{\star}}{2}$$

Interference between $\pm \mp$ and 00 helicity amplitudes cancels in the total cross-section \Rightarrow signal suppressed! see also Panico et al. 1708.07823, 2007.10356

Can exploit the SM/BSM interference by looking at fully differential WW crosssection in scattering and decay angles!

B, Franceschini, Wulzer 2012.11555

 $(\theta_{\pm}, \varphi_{\pm} \text{ polar and azimuthal angle of } W^{\pm} \text{ decay products})$

High-energy WW: angular analysis

- O_{W,B} contribute to longitudinal scattering amplitudes:
- In the SM, large contribution to $\mu^+\mu^- \rightarrow W^+W^$ from transverse polarizations.

$$\mathscr{A}_{00}^{(\mathrm{NP})} = s \left(G_{1L} - G_{3L} \right) \sin \theta_{\star}$$
$$\mathscr{A}_{-+} = -\frac{g^2}{2} \sin \theta_{\star}$$
$$\mathscr{A}_{+-} = g^2 \cos^2 \frac{\theta_{\star}}{2} \cot^2 \frac{\theta_{\star}}{2}$$

Interference between $\pm \mp$ and 00 helicity amplitudes cancels in the total cross-section \Rightarrow signal suppressed! see also Panico et al. 1708.07823, 2007.10356

Can exploit the SM/BSM interference by looking at fully differential WW crosssection in scattering and decay angles!

B, Franceschini, Wulzer 2012.11555

 $(\theta_{\pm}, \varphi_{\pm} \text{ polar and azimuthal angle of } W^{\pm} \text{ decay products})$

• Acceptance cuts in polar angle θ and p_T of b-jets. E.g. for pT > 10 GeV, $\theta > 10^{\circ}$:

$$\begin{split} \sigma_{\rm cut}(3\,{\rm TeV}) &= 0.13 \left[1 - 0.87 (\delta\lambda) + 0.74 (\delta\lambda)^2 \right] \, {\rm fb}, & {\sf BR}(hh \to 4b) = 34\% \\ \sigma_{\rm cut}(10\,{\rm TeV}) &= 0.24 \left[1 - 0.81 (\delta\lambda) + 0.71 (\delta\lambda)^2 \right] \, {\rm fb}, & {\sf factor 10 \ loss} \\ \sigma_{\rm cut}(30\,{\rm TeV}) &= 0.27 \left[1 - 0.79 (\delta\lambda) + 0.78 (\delta\lambda)^2 \right] \, {\rm fb}. & {\sf factor 10 \ loss} \\ {\sf in \ xsec \ at \ 30 \ TeV} \end{split}$$

- Neglect backgrounds (for the moment)
- Assume signal reconstruction efficiency ε ~ 25% as CLIC [1901.05897]: mainly from invariant-mass cuts and b-tag

\sqrt{s} [TeV]	L [ab-1]	σ [fb]	N _{rec}	$\delta\sigma \sim N_{\rm rec}^{-1/2}$	δλ
3	5	0.13	170	~ 7.5%	~ 10%
10	10	0.24	630	~ 4%	~ 5%
30	90	0.74	6,300	~ 1.2%	~ 1.5%

Sensitivity to angular acceptance

- hh signal is strongly peaked in the forward region
- Contribution from trilinear coupling is more central: loss due to angular cut is less important

Sensitivity to jet p_T threshold

Jets come from Higgs decays:
 typical momentum ~ m_h/2

• No significant impact if $pT_{min} \lesssim 40-50 \text{ GeV}$

higher thresholds start to reduce the sensitivity

Backgrounds for HH

- Backgrounds are important and cannot be neglected (see also CLIC study [1901.05897])
- Mainly VBF di-boson production: Zh & ZZ, but also WW, Wh, WZ...
 other backgrounds are easily rejected with cut on tot. inv. mass
- Precise invariant mass reconstruction is crucial to isolate signal
 - resolution on Z inv. mass ~ 6–7% at 3 TeV [CLICdp-Note-2018-004]
 - for Higgs energy resolution is worse: 10% on jet energy, ~ 15% on inv. mass (neutrinos in semi-leptonic b decay, too forward tracks missed)

thanks to Philipp

for discussion

what happens at muon collider?

Backgrounds for HH

(Very!) simplified background analysis (at parton level!)

- ► Include all VV → VV processes (Zhvv, ZZvv, WWvv, Whv, WZv)
- Apply gaussian smearing to jets, assuming 15% energy resolution
- Reconstruct bosons by pairing jets with minimal |m(j₁j₂) m(j₃j₄)|

 Optimize cuts to reject bkg: dijet inv. mass, n. of b-tags

 $M_{hh} > 105 \text{ GeV},$

$$n_b = 3.2$$

 $\varepsilon_{sig} = 27\%$

NB: all this should be done properly (and has been done, for CLIC), with a detector simulation

Backgrounds for HH

One can now repeat the analysis for different jet energy resolutions:

... and different energies:

no real gain using only central events...

Optimize cuts to reject bkg:

 $M_{hh} > 105 \text{ GeV},$

 $n_b = 2.8$ $\epsilon_{sig} = 32\%$

result very similar to 3 TeV

Resonances in VBF

The µ-collider is a "vector boson collider"

Example: singlet scalar production $\mu^+\mu^- \rightarrow \phi\nu\nu$, $\phi \rightarrow hh, W^+W^-, ZZ$

enhanced if the resonance is "light" $m_{\phi} \ll E$

Dawson 1985

B, Redigolo, Sala, Tesi 1807.04743 Costantini et al. 2005.10289

see also the "Muon Smasher's guide" Arkani-Hamed, Craig et al. to appear soon!

It's like a heavy Higgs with narrow width + hh decay

$$\sigma_{\mu\mu\to\phi\nu\nu} \approx \frac{g^4 \, s_{\gamma}^2}{256\pi^3 v^2} \log \frac{s}{m_{\phi}^2}$$

cross-section grows at high energy due to longitudinal W-fusion

A simple example: scalar singlet

$$\begin{aligned} \mathscr{L} &= \mathscr{L}_{\rm SM} + \frac{1}{2} (\partial_{\mu} S)^2 - \frac{1}{2} m_S^2 S^2 - a_{HS} |H|^2 S - \frac{\lambda_{HS}}{2} |H|^2 S^2 - V(S) \\ & \text{controls Higgs-singlet} \\ & \text{mixing} \sim \sin \gamma \\ & \text{sin } \gamma \sim \frac{a_{HS} v}{m_S^2} \end{aligned} \qquad \text{portal coupling} \qquad \begin{array}{c} & \text{triple couplings:} \\ & \text{BR}(\phi \to hh), \ g_{hhh} \\ & \text{mass eigenstates:} \end{aligned} \qquad h = \cos \gamma H^0 + \sin \gamma S \\ & \phi = -\sin \gamma H^0 + \cos \gamma S \end{aligned}$$

A simple example: scalar singlet

$$\begin{aligned} \mathscr{L} &= \mathscr{L}_{\mathrm{SM}} + \frac{1}{2} (\partial_{\mu} S)^{2} - \frac{1}{2} m_{S}^{2} S^{2} - a_{HS} |H|^{2} S - \frac{\lambda_{HS}}{2} |H|^{2} S^{2} - V(S) \\ & \text{controls Higgs-singlet} \\ & \text{mixing} \sim \sin \gamma \\ & \text{sin } \gamma \sim \frac{a_{HS} v}{m_{S}^{2}} \\ & \text{mass eigenstates:} \quad h = \cos \gamma H^{0} + \sin \gamma S \\ & \phi = -\sin \gamma H^{0} + \cos \gamma H^{0} + \cos \gamma \\ & \phi = -\sin \gamma H^{0} + \cos \gamma H^{0} + \cos^{2} \gamma \\ & \phi = -\sin \gamma H^{0} + \cos^{2} \gamma \\ & \phi = -\sin \gamma H^{0} + \cos^{2} \gamma \\ & \phi = -\sin \gamma H^{0} + \cos^{2} \gamma \\ & \phi = -\sin \gamma H^{0} + \cos^{2} \gamma \\ & \phi = -\sin \gamma H^{0} + \cos^{2} \gamma \\ & \phi = -\sin \gamma H^{0} + \cos^{2} \gamma \\ & \phi = -\sin \gamma H^{0} + \cos^{2} \gamma \\ & \phi = -\sin \gamma H^{0} + \cos^{2} \gamma \\ & \phi = -\sin \gamma H^{0} + \cos^{2} \gamma \\ & \phi = -\sin \gamma H^{0} + \cos^{2} \gamma \\ & \phi = -\sin \gamma H^{0} + \cos^{2} \gamma \\ & \phi = -\sin \gamma H^{0} + \cos^{2} \gamma \\ & \phi = -\sin \gamma H^{0} + \cos^{2} \gamma \\ & \phi = -\sin \gamma H^{0} + \cos^{2} \gamma \\ & \phi = -\sin \gamma H^{0} + \cos^{2$$

φ is like a heavy SM Higgs with narrow width + hh channel

26

hh(4b) decay channel

Cut & count experiment around the resonance peak:

significance =
$$\frac{N_{\text{sig}}}{\sqrt{(N_{\text{sig}} + N_{\text{bkg}}) + \alpha_{\text{sys}}^2 N_{\text{bkg}}^2}}$$
$$\alpha_{\text{sys}} = 2\% \text{ (but it has no impact)}$$

- Small background at high invariant-mass:
 - error is dominated by statistics
 - limits depend weakly on \u03c6 mass and collider energy

$$\sigma(e^+e^- \to \phi \nu \bar{\nu}) \times \text{BR}(\phi \to f) \simeq 3/L,$$

- For BR($\phi \rightarrow hh$) ~ 0.25, most sensitive channel is $\phi \rightarrow hh(4b)$
 - $\phi \rightarrow VV$ less sensitive, but complementary if BR($\phi \rightarrow hh$) small

hh(4b) decay channel

Main backgrounds: *hh*, *Zh*, *ZZ*. We simulate the full process $e^+e^- \rightarrow 4b + 2v$

M_{ii} [GeV]

Cut	$\epsilon_{ m sig}$	$\epsilon_{ m bkg}^{4b2 u}$
$E_{\rm miss} > 30 {\rm ~GeV}$	90%	95%
4 b-tags	50%	35%
$m_{bb} \in [88, 129] \text{ GeV}$	64%	23%
$ \cos \theta < 0.94$	96%	63%
$m_{4b} \in [770, 1070] \text{ GeV}$	98%	2.8%
Total efficiency	27%	1.3×10^{-3}

Efficiencies for signal and background:

(a) CLIC 1.5 TeV, $m_{\phi} = 1$ TeV

Cut	$\epsilon_{ m sig}$	$\epsilon_{ m bkg}^{4b2 u}$
$E_{\rm miss} > 30 {\rm ~GeV}$	94%	96%
4 b-tags	51%	33%
$m_{bb} \in [88, 137] \text{ GeV}$	60%	15%
$ \cos \theta < 0.95$	97%	58%
$m_{4b} \in [1.5, 2.04] \text{ TeV}$	91%	0.7%
Total efficiency	26%	2×10^{-4}

(b) CLIC 3 TeV, $m_{\phi} = 2$ TeV

Example: scalar singlet

Compare the reach of very high energy lepton & hadron colliders

For this class of models, a high-energy $\mu^+\mu^-$ collider has an amazing reach if compared to single Higgs meas. or direct searches at a 100 TeV pp collider ³⁰

Example: scalar singlet

Compare the reach of very high energy lepton & hadron colliders

For this class of models, a high-energy $\mu^+\mu^-$ collider has an amazing reach if compared to single Higgs meas. or direct searches at a 100 TeV pp collider ³⁰