



# ATF3 and ILC-IDT WG2: ILC FFS





A. Faus-Colfe on behalf of ATF collab.





### **Outline**

- ATF3
  - Objectives and Collaboration
- ILC-IDT WG2: BDS ILC FFS
  - Goals and Tasks







ATF2 final focus test beamline





# ATF2 goals and achievements

Goal 1: Establish the ILC final focus method with same optics and comparable beamline tolerances

- ATF2 Goal : 37 nm → ILC 7.7 nm (ILC250)
  - Achieved 41 nm (2016)

**Goal 2:** 2 nm beam stabilization at ATF2 IP, (much harder than nm stabilization in collision at ILC).

- FB latency 133 nsec achieved (target < 366 nsec)</p>
- Position jitter at ATF2 IP: 41 nm (2018) (direct stabilization limited by IPBPMs resolution 20 nm). Upstream FB shows capability for 2nm stabilization. Demonstrated ILC IPFB system.



Small beam sizes were obtained with beam intensities of 0.5-1.5  $10^9$  e<sup>-1</sup>/bunch ( $10^{10}$  design value) and reduced aberration optics ( $10\beta_x^* \times \beta_y^*$ )



Distribution of bunch positions measured at IPB, with two-BPM FB off (green) and on (purple)



Predicted vertical position jitter with FB on-off



## **ILC FFS - ATF3 objective and collaboration:**

Based on the achievements of the ATF2 no showstopper for ILC has been found, ATF3 plan is to pursue the necessary R&D to maximize the luminosity potential of ILC. In particular the assessment of the ILC FFS system design from the point of view of the beam dynamics aspects and the technological/hardware choices and the long-term stability operation issues.





# **ILC-IDT WG2 Technical proposal: DR and BDS**



LCWS2021 15-18 March 2021



## **ILC FFS Technical Preparation Plan: Tasks**

| ILC-FFS Tasks: Maximize Luminosity potential of ILC |                                              |  |  |  |  |
|-----------------------------------------------------|----------------------------------------------|--|--|--|--|
| T1: ILC-FFS system design                           | T1.1: Hardware optimization                  |  |  |  |  |
| Tr. 120 Tr S system design                          | T1.2: Realistic beam line driven / IP design |  |  |  |  |
| 2: ILC-FFS beam tests                               | T2.1: Long-Term stability                    |  |  |  |  |
|                                                     | T2.2: High-order aberrations                 |  |  |  |  |
|                                                     | T2.3: R&D complementary studies              |  |  |  |  |

#### Long Term stability



### **High-order aberrations**



#### **Instrumentation R&D**





## T1.1 ILC FFS system design: Hardware optimization

#### Vacuum Chambers

- Most of the present EXT-FF vacuum chambers are reused /duplicated
- The standard ID beam pipe is 24 mm, but due to additional features, the special sections use different cross sections.
- Wakefields on the EXT line was not taken seriously as the beam passed once, while that on the DR was considered because of the multi-turn of 2 Hz

# Why this is needed?



### > Magnets

- Final Doublet recup from SLAC
- Skew sextupoles poor assembling
- Septums not optimized



LCWS2021 15-18 March 2021



# T1.1 ILC FFS System design: Hardware optimization



**IPBSM** (nanometer beam size monitor)

### **IP-BSM** is not just a laser



Spectra-Physics Quanta-Ray PRO 350

# Why this is needed?

- ➢ IP-BSM Laser current problems:
- Stability (Energy, Modes = fringe pattern)
- Laser beam parameters reproducibility and resolution
- Nd:YAG Laser aging (tuning, dust, etc)

Laser Table

to Beam I

Laser Transport Line (LTL) and laser FF-IP tuning and optimization

Bending Magnet

Transport Line

Elertron Beam

Final Doublet



Vertical Table







# T1.1 ILC FFS System design: Hardware optimization

### Vacuum Chambers (ID beam 24 mm):

- Bellows shielding
- Clamp Flanges (ATF-DR type)
- Cavity BPM tapering (ID 20 mm)
- Stripline BPMs
- Dipole chamber (box type replaced by simple pipe)
- Septum chambers (A, B, C)
- FONT stripline kicker
- Pumping port chamber (ID 24 mm)





### New Magnets

- FD: QD0, QF1, SD0, SD1
- Skew sextupoles including movers
- Septum C (standard dipole)
- ZVOX (between septum B and C)

### CBPMs:

- Re-installation of all CBPMs (current #24, all #32)
- Add separate fast small movers for centering and position calibration, including mechanical study, specs (~10kg load and um resolution, prioritize high-β regions)
- Electronics: analogue electronics reliable but spares needed
- Digitizers: 20-year old model, higher resolution ADCs would increase the dynamic range.







## T1.1 ILC FFS System design: Hardware optimization

#### > IP-BSM Laser:

- Nd:YAG laser replacement choice, new laser parameters
- Start LTL, FF-IP simulation study
- Start laser stability study (energy, pointing, mode, and fringe pattern)
- e-beam arrival and timing jitter

### > FD vibration girder

 Girder for all the final elements coupled with a global positioning system





CLIC: Type 4 MBQ and stabilization system mounted on cam movers (left) and test setup including ZCMs, follower girder and local coordinate system (right).

#### > IP-BPMs

 Re-design towards sub-10 nm, wide dynamic range and linearity (new electronics/digitizers)



Layout of the three Cavity BPMs at ATF2-IP



Compact IP kicker

#### FONT IP feedback

Font kicker to improve wakefields

### Multi-OTR system

- Focusing motor, Filter actuator, CDD cameras
- XPS with oriented motor





# T1.2 ILC FFS system design: Realistic beam line driven / IP design

- Driven realistic beam dynamics specifications
- Realistic simulations should drive the design choices and the goals

Jitter assessment/measurement

Magnet errors

Wakefields sources (hardware change)

- Establish the scaling for ILC in terms of intensity
- Vibration mitigation for new FD
- Instrumentation assessment
- CBPMs calibration and resolution
- Multi-OTR, screens,...
- > IP Instrumentation assessment
- IP-BSM
- o IP-BPMs



ATF2 wakefield knobs system between QD10BFF and QD10AFF



$$(\sigma_y^*)^2 = (\sigma_{y0}^*)^2 + w^2 q^2$$

w: intensity dependence parameter





## T2.1 ILC FFS beam tests: Long-Term stability

Long-term stability is not simply the length of continuous operation, but a combination of:

- Beam performance stability (size and position)
- Repeatability and Reproducibility of performances (in separate periods including recovery of the optics)
- in about one week period.







# T2.1 ILC FFS beam tests: Long-Term stability

- > Nominal ( $10\beta_x^* \times \beta_y^*$ ) optics operation routine assessment
- Automated steering procedures and basic tuning algorithms (like envisaged for ILC)
- 2<sup>nd</sup> order correction knobs assessment (sextupoles and skew, octupoles)
- Energy bandwidth measurements
- Wakefield evaluation and mitigation
- o Upstream beam line (relatively low-  $\beta_v$ )
- Movable set-up mitigation techniques
- Vibrations long-term monitoring system



- Jitter sources assessment
- Measurements (entrance/IP)
- > CBPMs calibration process upgrade
- Duration of calibration optimization
- Lifetime degradation of calibration over time
- New time and phase invariant digital processing software to be developed, algorithm could first be tested on simulated data.
- > FONT FB system performance optimization
- Long-term beam trajectory control
- Routine use of y-y' FB to reduce jitter



Two bunch operation



# T2.2 ILC FFS beam tests: High-order aberrations

15-18 March 2021

### > Design $(\beta_x^* \times \beta_y^*)$ optics

- Automated steering procedures and basic tuning algorithms (like envisaged for ILC)
- 2<sup>nd</sup> order correction knobs assessment (sextupoles and skew, octupoles)
- Energy bandwidth measurements

### Ultra-low β<sub>y</sub>\*

- Octupoles need and alignement
- Longer L\* (move FD to the right /IP towards the dump)

Defined as a 10% increase of  $\sigma_{xy}^*$  for monoenergetic beam









# T2.3 ILC FFS beam tests: R&D complementary studies

- ILC DR injection/extraction kickers long term stability
- Fast kicker
- E-driven kicker
- New CBPMs ideas:
- ILC type cavities with Integrated electronics from Instrumentation Technologies
- Off-the-shelf (FMB-Oxford-Instrument Technologies) triplet of CBPMs
- Low-wakefield wavegide BPMs,
   aperture/resolution issues to be estimated (sensitivity degrades as 1/a)

CLIC DR induction kicker







Waveguide BPMs



Complete off-the-shelf CBPM system (FMB-Oxford - Instrumentation Technologies)



# T2.3 ILC FFS beam tests: R&D complementary studies

- Collimation issues for ILC
- Wakefiled impact
- Design options
- New wakefields setups
- Passive corrugated structures
- OTR, ODR and ChDR beam size monitors
- OTR at shorter UV wavelength (submicron resolution)
- ML technique applied to speed up operational issues











### Summary

➤ATF3 plan is to pursue the necessary R&D to maximize the luminosity potential of ILC. In particular the assessment of the ILC FFS system design from the point of view of the beam dynamics aspects and the technological/hardware choices and the long-term stability operation issues

A detailed **R&D Plan** in the framework of the **ILC-IDT Technical Preparation Plan** has been made for the **DRs** and **BDS** during the **ILC pre-lab**.

| ILC-FFS Tasks: Maximize Luminosity potential of ILC |                                                      |  | Tim       | eline     | During    |                        |
|-----------------------------------------------------|------------------------------------------------------|--|-----------|-----------|-----------|------------------------|
|                                                     |                                                      |  | <b>Y2</b> | <b>Y3</b> | <b>Y4</b> | construction<br>period |
| T1: ILC-FFS system design                           | <b>T1.1</b> : Hardware optimization                  |  |           |           |           | NO                     |
|                                                     | <b>T1.2</b> : Realistic beam line driven / IP design |  |           |           |           | NO                     |
|                                                     | <b>T2.1</b> : Long-Term stability                    |  |           |           |           | YES                    |
| T2: ILC-FFS beam tests                              | <b>T2.2</b> : High-order aberrations                 |  |           |           |           | YES                    |
|                                                     | T2.3: R&D complementary studies                      |  |           |           |           | YES                    |

➤ This ILC pre-lab period will be of paramount importance for the **training of young acceleration physicist generation** that will play a **key role** in the early stages of **ILC** commissioning and operation.







# Thanks for your attention





|                       |                   | Imperfections / issues                 | Detrimental effect                                                                                                            | Potential cures (by design or hardware improvement)                                                                                                    | Potential cures<br>(during operation)                                                    |
|-----------------------|-------------------|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| Dynamic Design Static |                   | Dipole / quadrupole<br>misalignment    | <ul> <li>Introduces unwanted dispersion (emittance growth)</li> <li>Deflects the beam</li> <li>Introduces coupling</li> </ul> | <ul> <li>Careful pre-alignment</li> <li>Add a dipole corrector, or</li> <li>Put quads on movers</li> <li>Add skew quads to correct coupling</li> </ul> | <ul> <li>BBA techniques</li> <li>If movers are available,<br/>align the quads</li> </ul> |
|                       | $\left\{ \right.$ | Bpm misalignment                       | <ul> <li>Causes wakefields effects</li> <li>Falses beam-based alignment<br/>algorithms</li> </ul>                             | <ul> <li>Reduce wakefields</li> <li>Careful pre-alignment</li> <li>Put bpms on movers</li> </ul>                                                       | <ul> <li>DFS, WFS</li> <li>If movers are available,<br/>align the bpms</li> </ul>        |
|                       |                   | Poor bpm resolution                    | <ul> <li>Fools beam-based alignment<br/>algorithms</li> </ul>                                                                 | Better resolution                                                                                                                                      | <ul> <li>Statistical averaging (but suffers from jitter)</li> </ul>                      |
|                       | l                 | Sextupole misalignment                 | <ul> <li>Introduces coupling, beta-<br/>beating</li> </ul>                                                                    | <ul> <li>Careful sextupole pre-alignment</li> <li>Put sextupole on movers</li> </ul>                                                                   | <ul> <li>If movers are available,<br/>align the sextupoles</li> </ul>                    |
|                       | ſ                 | Presence of sextupoles (and octupoles) | <ul> <li>Introduces nonlineartities</li> <li>reduce the momentum<br/>acceptance, etc.</li> </ul>                              | <ul> <li>Revisit the optics to reduce strength</li> <li>Add skew quadrupoles to correct coupling</li> </ul>                                            | <ul> <li>Tuning knobs</li> <li>Beam-based coupling correction techniques</li> </ul>      |
|                       | ]<br>[            | Lack of diagnostics                    | Forces blind operation                                                                                                        | Careful design of diagnostic sections                                                                                                                  | Use the diagnostics                                                                      |
|                       |                   | Long bunches                           | Amplifies wakefield effects                                                                                                   | Bunch compressor [likely not possible]                                                                                                                 |                                                                                          |
|                       |                   | Beam jitter                            | All of the above                                                                                                              | Reduce jitter at the source                                                                                                                            | Feedback systems                                                                         |
|                       | 1                 | Ground motion / vibrations             | All of the above                                                                                                              | Stabilization                                                                                                                                          | Stabilization                                                                            |



### Long term stability goals "quantification" / Criteria for success

In this context, "long-term stability test" means, keeping the beam stable, with repeatability, reproducibility over separate periods, including recovery of the optics, during 1 week. To achieve this objective a period of at least 2-3 years will be necessary.

- > Long-term stability of beam size and position in ATF2 have not yet been evaluated systematically.
- A monitoring is needed to evaluate and quantify properly the long-term stability, including the beam intensity dependence and higher-order aberrations effects between others.

A "comprehensive test" of the long term stability is needed to realize ILC, including quantitative evaluation of beam intensity dependence, correction of higher-order aberration effects, and development and implementation of stable monitor systems.

Furthermore this period will be of paramount importance for the training of young acceleration physicist generation that will play a key role in the early stages of ILC commissioning and operation.



### **Perspectives: ATF3**

A. Aryshev

### > R&D beyond colliders:

Mini-workshop to discuss potential projects was organized on 28 Aug. 2020 for Japanese community

| Project title                                                                               | Person in charge              | Funding  | Term        | Required ATF modifications           | Location      |
|---------------------------------------------------------------------------------------------|-------------------------------|----------|-------------|--------------------------------------|---------------|
| Development of SuperKEKB Fast Kicker .                                                      | M. Tawada (KEK)               | KEKB     | Fall 2021 ~ | minor                                | EXT-mid       |
| Development of SuperKEKB OTR Monitor.                                                       | T. Mori (KEK)                 | KEKB     | Fall 2021 ~ | minor                                | EXT-end       |
| New betatron feedback scheme, AC multipole magnets, and ultra-fast quadrupole kicker tests. | T. Nakamura<br>(KEK/JPARC)    | ?        | 2021 ~      | minor                                | DR            |
| Accelerator Control System test.                                                            | Y. Kaji (KEK)                 | KEKB     | 2021 ~      | minor                                | Timing system |
| Detector radiation resistance tests.                                                        | Y. Sugimoto (KEK)             | KEKB     | 2021 ~      | 80MeV linac optics                   | Linac-end     |
| Gamma-ray source for user application .                                                     | ATF group (KEK)               | -        | -           | minor                                | DR north      |
| Performance evaluation of ultra-short period undulator.                                     | S. Yamamoto (KEK)             | KEK-PF   | 2021 ~      | minor                                | DR north      |
| Polarized gamma-ray beam generation assuming ILC.                                           | N. Muramatsu<br>(Tohoku Uni.) | ?        | 2023 ~      | minor                                | EXT/FF        |
| Electron beam focusing by active plasma lens.                                               | M. Kando (Osaka U.)           | ?        | 2021 ~      | New laser, LTL, vacuum bump chamber  | EXT-end       |
| Test of the Lorentz invariance.                                                             | T. Shima (Osaka Uni.)         | JSPS ↑   | -           | BSM modification                     | FF            |
| Demonstration of seed FEL (CHG).                                                            | Y. Honda (KEK)                | JSPS ↑↑  | -           | EXT beamline modification            | EXT-mid       |
| Strong-field QED experiments.                                                               | Under discussion              | JSPS ↑↑↑ | -           | ATF2 FF region upgrade and extension | FF            |

Relatively simp
Implementation level Intermediate
Difficult