Importance of Z-pole and WW running

A. Freitas University of Pittsburgh

- Electroweak precision at Z pole & WW
- Electroweak precision at $\sqrt{s} = 250 \text{ GeV}$
- α_s and $\alpha(s)$ measurements

Electroweak precision at Z pole and WW

Z cross section and branching fractions

Z-pole asymmetries

Left-right asymmetry:

With polarized e^- beam:

$$A_{\mathsf{LR}} \equiv \frac{\sigma_{\mathsf{L}} - \sigma_{\mathsf{R}}}{\sigma_{\mathsf{L}} + \sigma_{\mathsf{R}}} = \mathcal{A}_{e}$$

Polarization asymmetry: Average τ pol. in $e^+e^- \rightarrow \tau^+\tau^-$: $\langle \mathcal{P}_\tau \rangle = -\mathcal{A}_\tau$

Z lineshape

• Deconvolution of initial-state QED radiation: $\sigma[e^+e^- \to f\bar{f}] = \mathcal{R}_{\text{ini}}(s, s') \otimes \sigma_{\text{hard}}(s')$

Subtraction of γ -exchange, γ -Z interference, box contributions:

 $\sigma_{\text{hard}} = \sigma_{\text{Z}} + \sigma_{\gamma} + \sigma_{\gamma\text{Z}} + \sigma_{\text{box}}$

■ *Z*-pole contribution:

$$\sigma_{\mathsf{Z}} = \frac{R}{(s - M_{\mathsf{Z}}^2)^2 + M_{\mathsf{Z}}^2 \Gamma_{\mathsf{Z}}^2} + \sigma_{\mathsf{non-res}}$$

 $\sigma_{\gamma}, \sigma_{\gamma Z}, \sigma_{\text{box}}, \sigma_{\text{non-res}}$ known at NLO \rightarrow need consistent pole expansion framework \rightarrow leading NNLO may be needed for future e^+e^-

- Implementation in MC program to evaluate exp. efficiency and particle ID
- Current state of art: e.g. KORALZ, KKMC $\rightarrow \mathcal{O}(\alpha^2 L)$ accuracy $[L = \ln(s/m_e^2)]$
- One to two orders improvement needed:

Jadach, Skrzypek '19

Jadach, Ward, ...

→ Need matching of h.o. matrix elements with QED parton shower (exclusive in all fs particles)

WW threshold

- High-precision measurement of M_W from $e^+e^- \rightarrow W^+W^-$ at threshold
- a) Corrections near threshold enhanced by $1/\beta$ and $\ln \beta$ $\beta \sim \sqrt{1 - 4 \frac{M_W^2 - iM_W\Gamma_W}{s}} \sim \sqrt{\Gamma_W/M_W}$

b) Non-resonant contributions are important

- Full $\mathcal{O}(\alpha)$ calculation of $e^+e^- \rightarrow 4f$ Denner, Dittmaier, Roth, Wieders '05
- EFT expansion in $\alpha \sim \Gamma_W/M_W \sim \beta^2$ Beneke, Falgari, Schwinn, Signer, Zanderighi '07
 - NLO corrections with NNLO Coulomb correction ($\propto 1/\beta^n$): $\delta_{th}M_W \sim 3 \text{ MeV}$ Actis, Beneke, Falgari, Schwinn '08
 - Adding NNLO corrections to $ee \rightarrow WW$ and $W \rightarrow f\bar{f}$ and NNLO ISR: $\delta_{th}M_W \lesssim 0.6 \text{ MeV}$

WW threshold

- High-precision measurement of M_W from $e^+e^- \rightarrow W^+W^-$ at threshold
- a) Corrections near threshold enhanced by $1/\beta$ and $\ln \beta$ $\beta \sim \sqrt{1 - 4 \frac{M_W^2 - iM_W\Gamma_W}{s}} \sim \sqrt{\Gamma_W/M_W}$
 - b) Non-resonant contributions are important

Resummation of soft photon radiation

Jadach, Płaczek, Skrzypek '19

Electroweak precision tests at future colliders

\sqrt{s}	M_Z	$2M_W$	
ILC/GigaZ	$100 { m fb}^{-1}$	500 fb $^{-1}$ (6 pts.)	beam pol. ($P_{e^-}=0.8, P_{e^+}=0.3$)
FCC-ee	230 ab^{-1}	10 ab $^{-1}$ (2 pts.)	2 detectors
CEPC	$45~\mathrm{ab}^{-1}$	2.6 ab^{-1} (3 pts.)	2 detectors

Anticipated precision for EWPOs:

	Current exp.	ILC/GigaZ	CEPC	FCC-ee
M_{W} [MeV]	15	1–2 ^{<i>a</i>,<i>e</i>}	1 <i>e</i>	1 <i>e</i>
M_{Z} [MeV]	2.1	_	0.5 ^e	0.1 ^e
Γ_Z [MeV]	2.3	1 <i>a</i>	0.5 ^e	0.1 ^e
$R_{\ell} = \Gamma_{\rm Z}^{\rm had} / \Gamma_{\rm Z}^{\ell} [10^{-3}]$	25	6 ^b	2 ^{<i>b</i>}	1 ^b
$R_b = \Gamma_Z^b / \Gamma_Z^{\text{had}} [10^{-5}]$	66	15 ^c	4.3 ^{<i>c</i>}	6 ^c
$\sin^2 heta_{ m eff}^\ell$ [10 $^{-5}$]	16	1 <i>d</i>	<1 ^e	0.5 ^e

Systematics:

 a energy scale

^b acceptance

 c flavor tagging

 d polarization

 e beam energy calibration / beam-beam interactions

Comparison of EWPOs with theory

- To probe new physics, compare EWPOs with SM theory predictions
- Need to take theory error into account:

	Current exp.	Current th. [†]	CEPC	FCC-ee
M_{W} [MeV]	15	4 *	1	1
Γ_Z [MeV]	2.3	0.4	0.5	0.1
$R_{\ell} = \Gamma_{\rm Z}^{\rm had} / \Gamma_{\rm Z}^{\ell} [10^{-3}]$	25	5	2	1
$R_b = \Gamma_Z^b / \Gamma_Z^{\text{had}} \left[10^{-5} \right]$	66	10	4.3	6
$\sin^2 heta_{ m eff}^\ell$ [10 ⁻⁵]	16	4.5	<1	0.5

* computed from G_{μ} [†] full NNLO and leading NNNLO

 \blacksquare Theory error estimate is not well defined, ideally $\Delta_{th} \ll \Delta_{exp}$

- Common methods:
- Count prefactors (α , N_c , N_f , ...)
- Extrapolation of perturbative series
- Renormalization scale dependence
- Renormalization scheme dependence

Comparison of EWPOs with theory

- Electroweak precision tests at future e^+e^- colliders require 1–2 orders improvement in SM theory calculations and tools
 - Z-pole: 3-loop & leading 4-loop EW + multi-loop/leg merging for QED MC
 - off Z-pole / backgrounds: (≥2)-loop EW
 - WW 2-loop EW for $2\rightarrow 2$ processes (+ 4-loop QCD)

 (≥ 1) -loop for backgr. and non-resonant terms

More operators than EWPOs

 \rightarrow Need to make flavor assumptions and/or use other obs. (e.g. W production and decay)

BSM reach: effective operator analysis

Projected reach assuming Minimal Flavor Violation:

95% CL reach from the full EFT fit (modified SILH')

Electroweak precision at $\sqrt{s}=250~{ m GeV}$

EWPOs accessible through radiative return $e^+e^- \rightarrow \gamma Z$

- $\blacksquare \ \gamma$ mostly collinear with beam
- Reduction in cross-section by $\sim \frac{\alpha}{\pi} \ln \frac{s}{m_{\rm A}^2} \sim 0.06$
- Precise det. of m_{ff} from measured angles:

$$m_{ff}^2 = s \frac{1-\beta}{1+\beta}, \quad \beta = \frac{|\sin(\theta_1 + \theta_2)|}{\sin\theta_1 + \sin\theta_2}$$

Additional backgrounds from $e^+e^- \rightarrow WW, ZZ$ that are not flat in m_{ff} Ueno '19

Fujii et al. '19

- $A_{LR} \rightarrow \sin^2 \theta_{eff}^{\ell}$ (limited by sys. err. on beam polarization)
- $A_{\mathsf{FB}}^{\mu,\tau,b}$ (statistics limited)
- R_{ℓ} , R_c , R_b (limited by sys. err. on flavor tag)
- No competitive measurements on M_Z , Γ_Z , σ^0 (need to use LEP values)

$Z\gamma$ electroweak precision: theory input

$$\mathcal{R}_{\text{ini}} = \sum_{n} \left(\frac{\alpha}{\pi}\right)^{n} \sum_{m=0}^{n} h_{nm} \ln^{m} \left(\frac{s}{m_{e}^{2}}\right)$$

Universal (m=n) logs known to n = 6, also some sub-leading terms Ablinger, Blümlein, De Freitas, Schönwald '20

Exclusive description: MC tools

Subleading effects: Radiative corrections to $e^+e^- \rightarrow f\bar{f}\gamma (+n\gamma)$

• Some corrections cancel for A_{LR}, A_{FB}, BRs

• NLO for
$$ee \to f\bar{f}\gamma$$

+ NNLO for $ee \to Z\gamma$,

 $Z \to f \overline{f}$ could be sufficient

<u>W mass</u>

W mass measurement from $e^+e^- \rightarrow WW$: Baak et al. '13

- $\ell \nu_{\ell} \ell' \nu_{\ell'}$: Endpoints of E_{ℓ} or other distributions
- $\ell \nu_{\ell} j j$: Kinematic reconstruction
- *jjjj*: Systematic uncertainty from color reconnection

Expected precision with $\mathcal{L}_{int} = 2 \text{ ab}^{-1}$ at $\sqrt{s} = 250 \text{ GeV}$: $\Delta M_W \approx 2.5 \text{ MeV}$

Theory needs: Small impact of loop corrections, but accurate decription of FSR QED effects needed

Anticipated precision for EWPOs:

Fujii et al. '19

	ILC-250*	ILC/GigaZ	CEPC	FCC-ee
M_{W} [MeV]	2.5 ^a	1–2 <i>a,e</i>	1 ^e	1 <i>e</i>
M_{Z} [MeV]	_	_	0.5 ^e	0.1 ^e
Γ_Z [MeV]	_	1 ^a	0.5 ^e	0.1 ^e
$R_{\ell} = \Gamma_{\rm Z}^{\rm had} / \Gamma_{\rm Z}^{\ell} [10^{-3}]$	16 ^c	6 ^b	2 ^{<i>b</i>}	1 ^b
$R_b = \Gamma_Z^b / \Gamma_Z^{\text{had}} \left[10^{-5} \right]$	23 ^c	15 ^c	4.3 ^{<i>c</i>}	6 ^c
$\sin^2 heta_{ ext{eff}}^\ell$ [10 $^{-5}$]	2 <i>d</i>	1 <i>d</i>	<1 ^e	0.5 ^e

Systematics:

*
$$\sqrt{s}$$
 = 250 GeV, \mathcal{L}_{int} = 2 ab $^{-1}$

 a energy scale

^b acceptance

 c flavor tagging

 d polarization

 $^{e}\ \mathrm{beam}\ \mathrm{energy}\ \mathrm{calibration}\ /\ \mathrm{beam}\ \mathrm{beam}\ \mathrm{interactions}$

BSM reach: effective operator analysis

Projected reach assuming Minimal Flavor Violation:

95% CL reach from the full EFT fit (modified SILH')

Correlation between EW and Higgs physics

Improvement of Z-pole data important for Higgs physics and aGC:

precision reach on effective couplings from full EFT global fit

de Blas, Durieux, Grojean, Gu, Paul '19

Strong coupling

• Electroweak precision ($R_{\ell} = \Gamma_Z^{had} / \Gamma_Z^{\ell}$): $\alpha_s = 0.120 \pm 0.003$ PDG '18

 \rightarrow No (negligible) non-perturbative QCD effects

FCC-ee: $\delta R_\ell \sim 0.001$

 $\Rightarrow \delta \alpha_{s} < 0.0002$ (subj. to theory error)

Caviat: R_{ℓ} could be affected by new physics

•
$$R = \frac{\sigma[ee \rightarrow had.]}{\sigma[ee \rightarrow \mu\mu]}$$
 at lower \sqrt{s}
e.g. CLEO ($\sqrt{s} \sim 9$ GeV): $\alpha_s = 0.110 \pm 0.015$
Kühn, Steinhauser, Teubner '07

 e^+

 \rightarrow dominated by *s*-channel photon, less room for new physics \rightarrow QCD still perturbative

naive scaling to 50 ab⁻¹ (BELLE-II): $\delta \alpha_{s} \sim 0.0001$

- $\Delta \alpha_{had}$: Could be limiting factor
 - a) From $e^+e^- \rightarrow$ had. using dispersion relation Current: $\delta(\Delta \alpha_{had}) \sim 10^{-4}$ Improvement to $\delta(\Delta \alpha_{had}) \sim 5 \times 10^{-5}$ likely
 - b) Direct determination at FCC-ee from $e^+e^- \rightarrow \mu^+\mu^-$ off the Z peak (i.e. $A^{\mu\mu}_{\text{FB}}$ at $\sqrt{s} \sim 88$ GeV and $\sqrt{s} \sim 95$ GeV)

 $ightarrow \delta(\Delta lpha_{had}) \sim 3 imes 10^{-5}$ with $\mathcal{L}_{tot} = 85~ab^{-1}$

Janot '15

Requires high-precision theory prediction for $e^+e^- \rightarrow \mu^+\mu^$ including 2/3-loop corrections for γ -exchange and box contributions

Summary

- **Electroweak precision tests** at future e^+e^- colliders require allow to probe multi-TeV BSM physics (or feebly coupled lighter physics)
- Improved measurements in several sectors important:
 EW masses and couplings, Higgs couplings, top mass, α_s and α(s)
- Theory progress needed both for fixed-order loop corrections as well as MC tools
- ILC-250 can deliver similar physics goals as GigaZ, but with reduced precision → Open question: Direct determination of α_s and $\alpha(s)$
- Unique theory challenges for description of $ee \rightarrow Z\gamma$ vs. $ee \rightarrow Z$

Backup slides

Z lineshape

• Deconvolution of initial-state QED radiation: $\sigma[e^+e^- \to f\bar{f}] = \mathcal{R}_{\text{ini}}(s, s') \otimes \sigma_{\text{hard}}(s')$

Subtraction of γ -exchange, γ -Z interference, box contributions:

 $\sigma_{\text{hard}} = \sigma_{\text{Z}} + \sigma_{\gamma} + \sigma_{\gamma\text{Z}} + \sigma_{\text{box}}$

■ *Z*-pole contribution:

$$\sigma_{\mathsf{Z}} = \frac{R}{(s - \overline{M}_{\mathsf{Z}}^2)^2 + \overline{M}_{\mathsf{Z}}^2 \overline{\Gamma}_{\mathsf{Z}}^2} + \sigma_{\mathsf{non-res}}$$

In experimental analyses:

$$\sigma \sim \frac{1}{(s - M_Z^2)^2 + s^2 \Gamma_Z^2 / M_Z^2}$$

$$\overline{M}_{Z} = M_{Z} / \sqrt{1 + \Gamma_{Z}^{2} / M_{Z}^{2}} \approx M_{Z} - 34 \text{ MeV}$$
$$\overline{\Gamma}_{Z} = \Gamma_{Z} / \sqrt{1 + \Gamma_{Z}^{2} / M_{Z}^{2}} \approx \Gamma_{Z} - 0.9 \text{ MeV}$$

<u>"Hard" matrix element</u>

Consistent (gauge-invariant) theory setup: Expansion of $\mathcal{A}[e^+e^- \rightarrow \mu^+\mu^-]$ about $s_0 = M_Z^2 - iM_Z\Gamma_Z$:

$$\mathcal{A}[e^+e^- \to f\bar{f}] = \frac{R}{s-s_0} + S + (s-s_0)T + \dots$$
$$R = g_Z^e(s_0)g_Z^f(s_0)$$
$$S = \left[\frac{1}{M_Z^2}g_\gamma^e g_\gamma^f + g_Z^e g_Z^{f\prime} + g_Z^{e\prime} g_Z^f + S_{\text{box}}\right]_{s=s_0}$$

 $g_{V}^{f}(s)$: effective $Vf\bar{f}$ couplings

At NNLO: Need R at $\mathcal{O}(\alpha^2)$, S at $\mathcal{O}(\alpha)$, etc.

Z-pole asymmetries

Blondel scheme: (if e^- and e^+ polarization available) Blondel '88

Four independent measurements for $P_{e^+}/P_{e^-} = ++, +-, -+, --$

$$A_{\mathsf{LR}} = \sqrt{\frac{(\sigma_{++} + \sigma_{-+} - \sigma_{+-} - \sigma_{--})(-\sigma_{++} + \sigma_{-+} - \sigma_{+-} + \sigma_{--})}{(\sigma_{++} + \sigma_{-+} + \sigma_{+-} + \sigma_{--})(-\sigma_{++} + \sigma_{-+} + \sigma_{+-} - \sigma_{--})}}$$

Note: No need to know $|P_{e^{\pm}}|$!

Main systematic uncertainties:

- \blacksquare Difference of |P| for P>0 and P<0
- \blacksquare Difference of $\mathcal L$ for P>0 and P<0

 $\delta A_{\rm LR} \approx 10^{-4} \qquad \Rightarrow \qquad \delta \sin^2 \theta_{\rm eff}^{\ell} \approx 1.3 \times 10^{-5}$

Mönig, Hawkings '99

Theory calculations: Status

Many seminal works on 1-loop and leading 2-loop corrections Veltman, Passarino, Sirlin, Marciano, Bardin, Hollik, Riemann, Degrassi, Kniehl, ...

• Full 2-loop results for M_W , Z-pole observables

Freitas, Hollik, Walter, Weiglein '00	Hollik, Meier, Uccirati '05,07
Awramik, Czakon '02	Awramik, Czakon, Freitas, Kniehl '08
Onishchenko, Veretin '02	Freitas '14
Awramik, Czakon, Freitas, Weiglein '04	Dubovyk, Freitas, Gluza, Riemann, Usovitsch '16,18
Awramik, Czakon, Freitas '06	

Approximate 3- and 4-loop results (enhance by Y_t and/or N_f)

Chetyrkin, Kühn, Steinhauser '95 Faisst, Kühn, Seidensticker, Veretin '03 Boughezal, Tausk, v. d. Bij '05 Schröder, Steinhauser '05 Chetyrkin et al. '06 Boughezal, Czakon '06 Chen, Freitas '20

Theory and parametric uncertainties

	CEPC	perturb. error with 3-loop [†]	Param. error CEPC*	main source
$M_{\sf W}$ [MeV]	1	1	2.1	$m_{t}, \Delta \alpha$
Γ_Z [MeV]	0.5	0.15	0.15	$m_{t}, lpha_{S}$
$R_b [10^{-5}]$	4.3	5	< 1	
$\sin^2 heta_{ m eff}^\ell$ [10 $^{-5}$]	<1	1.5	2	m_{t} , $\Delta lpha$

[†] Theory scenario: $\mathcal{O}(\alpha \alpha_s^2)$, $\mathcal{O}(N_f \alpha^2 \alpha_s)$, $\mathcal{O}(N_f^2 \alpha^2 \alpha_s)$, leading 4-loop $(N_f^n = \text{at least } n \text{ closed fermion loops})$

Parametric inputs:

***CEPC:** $\delta m_t = 600 \text{ MeV}, \ \delta \alpha_s = 0.0002, \ \delta M_Z = 0.5 \text{ MeV}, \ \delta(\Delta \alpha) = 5 \times 10^{-5}$

Theory and parametric uncertainties

	CEPC	perturb. error with 3-loop [†]	Param. error CEPC*	main source
M_{W} [MeV]	1	1	0.6	$\Delta \alpha$
Γ_Z [MeV]	0.5	0.15	0.1	$lpha_{ extsf{S}}$
$R_b [10^{-5}]$	4.3	5	< 1	
$\sin^2 heta_{ m eff}^\ell$ [10 $^{-5}$]	<1	1.5	1	$\Delta \alpha$

[†] Theory scenario: $\mathcal{O}(\alpha \alpha_s^2)$, $\mathcal{O}(N_f \alpha^2 \alpha_s)$, $\mathcal{O}(N_f^2 \alpha^2 \alpha_s)$, leading 4-loop $(N_f^n = \text{at least } n \text{ closed fermion loops})$

Parametric inputs:

*FCC-ee: $\delta m_t = 50 \text{ MeV}, \delta \alpha_s = 0.0002, \delta M_Z = 0.5 \text{ MeV}, \delta(\Delta \alpha) = 3 \times 10^{-5}$

Calculational techniques

Experimental precision requires inclusion of **radiative corrections** in theory (1-loop, 2-loop, and partial 3-loop)

Integrals over loop momenta:

$$\int d^4q_1 d^4q_2 f(q_1, q_2, p_1, p_2, ..., m_1, m_2, ...)$$

Computer algebra tools:

J

- Generation of diagrams, $\mathcal{O}(100) \mathcal{O}(10000)$
- Lorentz and Dirac algebra
- Integral simplification (and expansion)

Evaluation of loop integrals:

- In general not possible analytically
- Numerical methods are more general, but computing intensive
- Special numerical techniques can balance precision and evaluation time

Analytic calculations

- Mostly used for diagrams with few mass scales
- Reduce to **master integrals** with integration-by-parts and other identities Chetyrkin, Tkachov '81; Gehrmann, Remiddi '00; Laporta '00; ...

Public programs:	Reduze	von Manteuffel, Studerus '12
	FIRE	Smirnov '13,14
	LiteRed	Lee '13
	KIRA	Maierhoefer, Usovitsch, Uwer '17

 \rightarrow Large need for computing time and memory

- Evaluate master integrals with differential equations or Mellin-Barnes rep. Kotikov '91; Remiddi '97; Smirnov '00,01; Henn '13;...
 - → Result in terms of Goncharov polylogs / multiple polylogs
 - → Some problems need iterated elliptic integrals / elliptic multiple polylogs Broedel, Duhr, Dulat, Trancredi '17,18 Ablinger er al. '17

Asymptotic expansions

- Exploit large mass ratios, $e. g. M_Z^2/m_t^2 \approx 1/4$
- Evaluate coeff. integrals analytically
- Fast numerical evaluation
- \rightarrow Used in some 2/3-scale problems
- \rightarrow Public programs:
 - exp Harlander, Seidensticker, Steinhauser '97
 - asy Pak, Smirnov '10
- → Possible limitations:
 - Difficult coefficient integrals
 - bad convergence

Numerical integration

Two general approches:

- \rightarrow Automated treatment of UV/IR divergencies
- \rightarrow No restriction on number of loops or legs

Sector decomposition:

Public programs:	SecDec	Carter, Heinrich '10; Borowka et al. '12,15,17
	FIESTA	Smirnov, Tentyukov '08; Smirnov '13,15

Mellin-Barnes representations:

Public programs:	MB/MBresolve	Czakon '06; Smirnov, Smirnov '09
	AMBRE/MBnumerics	Gluza, Kajda, Riemann '07 Dubovyk, Gluza, Riemann '15 Usovitsch, Dubovyk, Riemann '18

- Diagrams with internal thresholds can cause numerical instabilities
- Specialized techniques (for some type of diagrams) often improve computing time, robustness, precision (but not automated)

Specialized numerical techniques

Example: HZ double boxes Song, Freitas '21

- Introduce Feynman parameters and disp. rel.
- Expressions for second loop from, e.g., LoopTools Hahn, Perez-Victoria '98
- 3-dim. numerical integral with adaptive Gaussian integration
- \$\mathcal{O}(0.1\%)\$ precision in \$\mathcal{O}(min.)\$ on laptop

